| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grucollcld.1 |
⊢ ( 𝜑 → 𝐺 ∈ Univ ) |
| 2 |
|
grucollcld.2 |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝐺 × 𝐺 ) ) |
| 3 |
|
grucollcld.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐺 ) |
| 4 |
|
dfcoll2 |
⊢ ( 𝐹 Coll 𝐴 ) = ∪ 𝑥 ∈ 𝐴 Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } |
| 5 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } = ∅ ) → Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } = ∅ ) |
| 6 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } = ∅ ) → 𝐺 ∈ Univ ) |
| 7 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } = ∅ ) → 𝐴 ∈ 𝐺 ) |
| 8 |
6 7
|
gru0eld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } = ∅ ) → ∅ ∈ 𝐺 ) |
| 9 |
5 8
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } = ∅ ) → Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ∈ 𝐺 ) |
| 10 |
|
neq0 |
⊢ ( ¬ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } = ∅ ↔ ∃ 𝑧 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ) |
| 11 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ) → 𝐺 ∈ Univ ) |
| 12 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝐹 𝑦 ↔ 𝑥 𝐹 𝑧 ) ) |
| 13 |
12
|
elscottab |
⊢ ( 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } → 𝑥 𝐹 𝑧 ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ) → 𝑥 𝐹 𝑧 ) |
| 15 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ) → 𝐹 ⊆ ( 𝐺 × 𝐺 ) ) |
| 16 |
15
|
ssbrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ) → ( 𝑥 𝐹 𝑧 → 𝑥 ( 𝐺 × 𝐺 ) 𝑧 ) ) |
| 17 |
14 16
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ) → 𝑥 ( 𝐺 × 𝐺 ) 𝑧 ) |
| 18 |
|
brxp |
⊢ ( 𝑥 ( 𝐺 × 𝐺 ) 𝑧 ↔ ( 𝑥 ∈ 𝐺 ∧ 𝑧 ∈ 𝐺 ) ) |
| 19 |
18
|
simprbi |
⊢ ( 𝑥 ( 𝐺 × 𝐺 ) 𝑧 → 𝑧 ∈ 𝐺 ) |
| 20 |
17 19
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ) → 𝑧 ∈ 𝐺 ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ) → 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ) |
| 22 |
11 20 21
|
gruscottcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ) → Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ∈ 𝐺 ) |
| 23 |
22
|
expcom |
⊢ ( 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ∈ 𝐺 ) ) |
| 24 |
23
|
exlimiv |
⊢ ( ∃ 𝑧 𝑧 ∈ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ∈ 𝐺 ) ) |
| 25 |
10 24
|
sylbi |
⊢ ( ¬ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } = ∅ → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ∈ 𝐺 ) ) |
| 26 |
25
|
impcom |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } = ∅ ) → Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ∈ 𝐺 ) |
| 27 |
9 26
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ∈ 𝐺 ) |
| 28 |
27
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ∈ 𝐺 ) |
| 29 |
|
gruiun |
⊢ ( ( 𝐺 ∈ Univ ∧ 𝐴 ∈ 𝐺 ∧ ∀ 𝑥 ∈ 𝐴 Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ∈ 𝐺 ) → ∪ 𝑥 ∈ 𝐴 Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ∈ 𝐺 ) |
| 30 |
1 3 28 29
|
syl3anc |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 Scott { 𝑦 ∣ 𝑥 𝐹 𝑦 } ∈ 𝐺 ) |
| 31 |
4 30
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐹 Coll 𝐴 ) ∈ 𝐺 ) |