Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Shorter primitive equivalent of ax-groth
Grothendieck universes are closed under collection
elscottab
Metamath Proof Explorer
Description: An element of the output of the Scott operation applied to a class
abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour , 14-Aug-2023)
Ref
Expression
Hypothesis
elscottab.1
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
Assertion
elscottab
⊢ ( 𝑦 ∈ Scott { 𝑥 ∣ 𝜑 } → 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
elscottab.1
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
2
scottss
⊢ Scott { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜑 }
3
2
sseli
⊢ ( 𝑦 ∈ Scott { 𝑥 ∣ 𝜑 } → 𝑦 ∈ { 𝑥 ∣ 𝜑 } )
4
vex
⊢ 𝑦 ∈ V
5
4 1
elab
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 )
6
3 5
sylib
⊢ ( 𝑦 ∈ Scott { 𝑥 ∣ 𝜑 } → 𝜓 )