Metamath Proof Explorer


Theorem elscottab

Description: An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023)

Ref Expression
Hypothesis elscottab.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion elscottab ( 𝑦 ∈ Scott { 𝑥𝜑 } → 𝜓 )

Proof

Step Hyp Ref Expression
1 elscottab.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 scottss Scott { 𝑥𝜑 } ⊆ { 𝑥𝜑 }
3 2 sseli ( 𝑦 ∈ Scott { 𝑥𝜑 } → 𝑦 ∈ { 𝑥𝜑 } )
4 vex 𝑦 ∈ V
5 4 1 elab ( 𝑦 ∈ { 𝑥𝜑 } ↔ 𝜓 )
6 3 5 sylib ( 𝑦 ∈ Scott { 𝑥𝜑 } → 𝜓 )