Metamath Proof Explorer


Theorem scottss

Description: Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Assertion scottss Scott 𝐴𝐴

Proof

Step Hyp Ref Expression
1 df-scott Scott 𝐴 = { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) }
2 1 ssrab3 Scott 𝐴𝐴