Metamath Proof Explorer


Theorem gru0eld

Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses gru0eld.1 ( 𝜑𝐺 ∈ Univ )
gru0eld.2 ( 𝜑𝐴𝐺 )
Assertion gru0eld ( 𝜑 → ∅ ∈ 𝐺 )

Proof

Step Hyp Ref Expression
1 gru0eld.1 ( 𝜑𝐺 ∈ Univ )
2 gru0eld.2 ( 𝜑𝐴𝐺 )
3 0ss ∅ ⊆ 𝐴
4 3 a1i ( 𝜑 → ∅ ⊆ 𝐴 )
5 gruss ( ( 𝐺 ∈ Univ ∧ 𝐴𝐺 ∧ ∅ ⊆ 𝐴 ) → ∅ ∈ 𝐺 )
6 1 2 4 5 syl3anc ( 𝜑 → ∅ ∈ 𝐺 )