Metamath Proof Explorer
Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
gru0eld.1 |
⊢ ( 𝜑 → 𝐺 ∈ Univ ) |
|
|
gru0eld.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐺 ) |
|
Assertion |
gru0eld |
⊢ ( 𝜑 → ∅ ∈ 𝐺 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
gru0eld.1 |
⊢ ( 𝜑 → 𝐺 ∈ Univ ) |
2 |
|
gru0eld.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐺 ) |
3 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
4 |
3
|
a1i |
⊢ ( 𝜑 → ∅ ⊆ 𝐴 ) |
5 |
|
gruss |
⊢ ( ( 𝐺 ∈ Univ ∧ 𝐴 ∈ 𝐺 ∧ ∅ ⊆ 𝐴 ) → ∅ ∈ 𝐺 ) |
6 |
1 2 4 5
|
syl3anc |
⊢ ( 𝜑 → ∅ ∈ 𝐺 ) |