Metamath Proof Explorer
Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
gru0eld.1 |
|
|
|
gru0eld.2 |
|
|
Assertion |
gru0eld |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
gru0eld.1 |
|
2 |
|
gru0eld.2 |
|
3 |
|
0ss |
|
4 |
3
|
a1i |
|
5 |
|
gruss |
|
6 |
1 2 4 5
|
syl3anc |
|