Metamath Proof Explorer


Theorem gru0eld

Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses gru0eld.1 φ G Univ
gru0eld.2 φ A G
Assertion gru0eld φ G

Proof

Step Hyp Ref Expression
1 gru0eld.1 φ G Univ
2 gru0eld.2 φ A G
3 0ss A
4 3 a1i φ A
5 gruss G Univ A G A G
6 1 2 4 5 syl3anc φ G