Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gru0eld.1 | |- ( ph -> G e. Univ ) |
|
| gru0eld.2 | |- ( ph -> A e. G ) |
||
| Assertion | gru0eld | |- ( ph -> (/) e. G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gru0eld.1 | |- ( ph -> G e. Univ ) |
|
| 2 | gru0eld.2 | |- ( ph -> A e. G ) |
|
| 3 | 0ss | |- (/) C_ A |
|
| 4 | 3 | a1i | |- ( ph -> (/) C_ A ) |
| 5 | gruss | |- ( ( G e. Univ /\ A e. G /\ (/) C_ A ) -> (/) e. G ) |
|
| 6 | 1 2 4 5 | syl3anc | |- ( ph -> (/) e. G ) |