Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gru0eld.1 | |- ( ph -> G e. Univ ) |
|
gru0eld.2 | |- ( ph -> A e. G ) |
||
Assertion | gru0eld | |- ( ph -> (/) e. G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gru0eld.1 | |- ( ph -> G e. Univ ) |
|
2 | gru0eld.2 | |- ( ph -> A e. G ) |
|
3 | 0ss | |- (/) C_ A |
|
4 | 3 | a1i | |- ( ph -> (/) C_ A ) |
5 | gruss | |- ( ( G e. Univ /\ A e. G /\ (/) C_ A ) -> (/) e. G ) |
|
6 | 1 2 4 5 | syl3anc | |- ( ph -> (/) e. G ) |