Metamath Proof Explorer


Theorem gru0eld

Description: A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses gru0eld.1
|- ( ph -> G e. Univ )
gru0eld.2
|- ( ph -> A e. G )
Assertion gru0eld
|- ( ph -> (/) e. G )

Proof

Step Hyp Ref Expression
1 gru0eld.1
 |-  ( ph -> G e. Univ )
2 gru0eld.2
 |-  ( ph -> A e. G )
3 0ss
 |-  (/) C_ A
4 3 a1i
 |-  ( ph -> (/) C_ A )
5 gruss
 |-  ( ( G e. Univ /\ A e. G /\ (/) C_ A ) -> (/) e. G )
6 1 2 4 5 syl3anc
 |-  ( ph -> (/) e. G )