Description: Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grusucd.1 | |- ( ph -> G e. Univ ) |
|
grusucd.2 | |- ( ph -> A e. G ) |
||
Assertion | grusucd | |- ( ph -> suc A e. G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grusucd.1 | |- ( ph -> G e. Univ ) |
|
2 | grusucd.2 | |- ( ph -> A e. G ) |
|
3 | df-suc | |- suc A = ( A u. { A } ) |
|
4 | grusn | |- ( ( G e. Univ /\ A e. G ) -> { A } e. G ) |
|
5 | 1 2 4 | syl2anc | |- ( ph -> { A } e. G ) |
6 | gruun | |- ( ( G e. Univ /\ A e. G /\ { A } e. G ) -> ( A u. { A } ) e. G ) |
|
7 | 1 2 5 6 | syl3anc | |- ( ph -> ( A u. { A } ) e. G ) |
8 | 3 7 | eqeltrid | |- ( ph -> suc A e. G ) |