Description: Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grusucd.1 | |- ( ph -> G e. Univ ) |
|
| grusucd.2 | |- ( ph -> A e. G ) |
||
| Assertion | grusucd | |- ( ph -> suc A e. G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grusucd.1 | |- ( ph -> G e. Univ ) |
|
| 2 | grusucd.2 | |- ( ph -> A e. G ) |
|
| 3 | df-suc | |- suc A = ( A u. { A } ) |
|
| 4 | grusn | |- ( ( G e. Univ /\ A e. G ) -> { A } e. G ) |
|
| 5 | 1 2 4 | syl2anc | |- ( ph -> { A } e. G ) |
| 6 | gruun | |- ( ( G e. Univ /\ A e. G /\ { A } e. G ) -> ( A u. { A } ) e. G ) |
|
| 7 | 1 2 5 6 | syl3anc | |- ( ph -> ( A u. { A } ) e. G ) |
| 8 | 3 7 | eqeltrid | |- ( ph -> suc A e. G ) |