Metamath Proof Explorer


Theorem grusucd

Description: Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023)

Ref Expression
Hypotheses grusucd.1
|- ( ph -> G e. Univ )
grusucd.2
|- ( ph -> A e. G )
Assertion grusucd
|- ( ph -> suc A e. G )

Proof

Step Hyp Ref Expression
1 grusucd.1
 |-  ( ph -> G e. Univ )
2 grusucd.2
 |-  ( ph -> A e. G )
3 df-suc
 |-  suc A = ( A u. { A } )
4 grusn
 |-  ( ( G e. Univ /\ A e. G ) -> { A } e. G )
5 1 2 4 syl2anc
 |-  ( ph -> { A } e. G )
6 gruun
 |-  ( ( G e. Univ /\ A e. G /\ { A } e. G ) -> ( A u. { A } ) e. G )
7 1 2 5 6 syl3anc
 |-  ( ph -> ( A u. { A } ) e. G )
8 3 7 eqeltrid
 |-  ( ph -> suc A e. G )