Step |
Hyp |
Ref |
Expression |
1 |
|
r1rankcld.1 |
|- ( ph -> A e. ( R1 ` R ) ) |
2 |
|
onssr1 |
|- ( R e. dom R1 -> R C_ ( R1 ` R ) ) |
3 |
2
|
adantl |
|- ( ( ph /\ R e. dom R1 ) -> R C_ ( R1 ` R ) ) |
4 |
|
rankr1ai |
|- ( A e. ( R1 ` R ) -> ( rank ` A ) e. R ) |
5 |
1 4
|
syl |
|- ( ph -> ( rank ` A ) e. R ) |
6 |
5
|
adantr |
|- ( ( ph /\ R e. dom R1 ) -> ( rank ` A ) e. R ) |
7 |
3 6
|
sseldd |
|- ( ( ph /\ R e. dom R1 ) -> ( rank ` A ) e. ( R1 ` R ) ) |
8 |
1
|
adantr |
|- ( ( ph /\ -. R e. dom R1 ) -> A e. ( R1 ` R ) ) |
9 |
|
noel |
|- -. A e. (/) |
10 |
9
|
a1i |
|- ( -. R e. dom R1 -> -. A e. (/) ) |
11 |
|
ndmfv |
|- ( -. R e. dom R1 -> ( R1 ` R ) = (/) ) |
12 |
10 11
|
neleqtrrd |
|- ( -. R e. dom R1 -> -. A e. ( R1 ` R ) ) |
13 |
12
|
adantl |
|- ( ( ph /\ -. R e. dom R1 ) -> -. A e. ( R1 ` R ) ) |
14 |
8 13
|
pm2.21dd |
|- ( ( ph /\ -. R e. dom R1 ) -> ( rank ` A ) e. ( R1 ` R ) ) |
15 |
7 14
|
pm2.61dan |
|- ( ph -> ( rank ` A ) e. ( R1 ` R ) ) |