Metamath Proof Explorer


Theorem r1rankcld

Description: Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypothesis r1rankcld.1
|- ( ph -> A e. ( R1 ` R ) )
Assertion r1rankcld
|- ( ph -> ( rank ` A ) e. ( R1 ` R ) )

Proof

Step Hyp Ref Expression
1 r1rankcld.1
 |-  ( ph -> A e. ( R1 ` R ) )
2 onssr1
 |-  ( R e. dom R1 -> R C_ ( R1 ` R ) )
3 2 adantl
 |-  ( ( ph /\ R e. dom R1 ) -> R C_ ( R1 ` R ) )
4 rankr1ai
 |-  ( A e. ( R1 ` R ) -> ( rank ` A ) e. R )
5 1 4 syl
 |-  ( ph -> ( rank ` A ) e. R )
6 5 adantr
 |-  ( ( ph /\ R e. dom R1 ) -> ( rank ` A ) e. R )
7 3 6 sseldd
 |-  ( ( ph /\ R e. dom R1 ) -> ( rank ` A ) e. ( R1 ` R ) )
8 1 adantr
 |-  ( ( ph /\ -. R e. dom R1 ) -> A e. ( R1 ` R ) )
9 noel
 |-  -. A e. (/)
10 9 a1i
 |-  ( -. R e. dom R1 -> -. A e. (/) )
11 ndmfv
 |-  ( -. R e. dom R1 -> ( R1 ` R ) = (/) )
12 10 11 neleqtrrd
 |-  ( -. R e. dom R1 -> -. A e. ( R1 ` R ) )
13 12 adantl
 |-  ( ( ph /\ -. R e. dom R1 ) -> -. A e. ( R1 ` R ) )
14 8 13 pm2.21dd
 |-  ( ( ph /\ -. R e. dom R1 ) -> ( rank ` A ) e. ( R1 ` R ) )
15 7 14 pm2.61dan
 |-  ( ph -> ( rank ` A ) e. ( R1 ` R ) )