Metamath Proof Explorer


Theorem r1rankcld

Description: Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypothesis r1rankcld.1 ( 𝜑𝐴 ∈ ( 𝑅1𝑅 ) )
Assertion r1rankcld ( 𝜑 → ( rank ‘ 𝐴 ) ∈ ( 𝑅1𝑅 ) )

Proof

Step Hyp Ref Expression
1 r1rankcld.1 ( 𝜑𝐴 ∈ ( 𝑅1𝑅 ) )
2 onssr1 ( 𝑅 ∈ dom 𝑅1𝑅 ⊆ ( 𝑅1𝑅 ) )
3 2 adantl ( ( 𝜑𝑅 ∈ dom 𝑅1 ) → 𝑅 ⊆ ( 𝑅1𝑅 ) )
4 rankr1ai ( 𝐴 ∈ ( 𝑅1𝑅 ) → ( rank ‘ 𝐴 ) ∈ 𝑅 )
5 1 4 syl ( 𝜑 → ( rank ‘ 𝐴 ) ∈ 𝑅 )
6 5 adantr ( ( 𝜑𝑅 ∈ dom 𝑅1 ) → ( rank ‘ 𝐴 ) ∈ 𝑅 )
7 3 6 sseldd ( ( 𝜑𝑅 ∈ dom 𝑅1 ) → ( rank ‘ 𝐴 ) ∈ ( 𝑅1𝑅 ) )
8 1 adantr ( ( 𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1 ) → 𝐴 ∈ ( 𝑅1𝑅 ) )
9 noel ¬ 𝐴 ∈ ∅
10 9 a1i ( ¬ 𝑅 ∈ dom 𝑅1 → ¬ 𝐴 ∈ ∅ )
11 ndmfv ( ¬ 𝑅 ∈ dom 𝑅1 → ( 𝑅1𝑅 ) = ∅ )
12 10 11 neleqtrrd ( ¬ 𝑅 ∈ dom 𝑅1 → ¬ 𝐴 ∈ ( 𝑅1𝑅 ) )
13 12 adantl ( ( 𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1 ) → ¬ 𝐴 ∈ ( 𝑅1𝑅 ) )
14 8 13 pm2.21dd ( ( 𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1 ) → ( rank ‘ 𝐴 ) ∈ ( 𝑅1𝑅 ) )
15 7 14 pm2.61dan ( 𝜑 → ( rank ‘ 𝐴 ) ∈ ( 𝑅1𝑅 ) )