Step |
Hyp |
Ref |
Expression |
1 |
|
r1rankcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑅1 ‘ 𝑅 ) ) |
2 |
|
onssr1 |
⊢ ( 𝑅 ∈ dom 𝑅1 → 𝑅 ⊆ ( 𝑅1 ‘ 𝑅 ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ dom 𝑅1 ) → 𝑅 ⊆ ( 𝑅1 ‘ 𝑅 ) ) |
4 |
|
rankr1ai |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝑅 ) → ( rank ‘ 𝐴 ) ∈ 𝑅 ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ( rank ‘ 𝐴 ) ∈ 𝑅 ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ dom 𝑅1 ) → ( rank ‘ 𝐴 ) ∈ 𝑅 ) |
7 |
3 6
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ dom 𝑅1 ) → ( rank ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑅 ) ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1 ) → 𝐴 ∈ ( 𝑅1 ‘ 𝑅 ) ) |
9 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
10 |
9
|
a1i |
⊢ ( ¬ 𝑅 ∈ dom 𝑅1 → ¬ 𝐴 ∈ ∅ ) |
11 |
|
ndmfv |
⊢ ( ¬ 𝑅 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝑅 ) = ∅ ) |
12 |
10 11
|
neleqtrrd |
⊢ ( ¬ 𝑅 ∈ dom 𝑅1 → ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝑅 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1 ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝑅 ) ) |
14 |
8 13
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ dom 𝑅1 ) → ( rank ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑅 ) ) |
15 |
7 14
|
pm2.61dan |
⊢ ( 𝜑 → ( rank ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝑅 ) ) |