Metamath Proof Explorer


Theorem grur1cld

Description: Grothendieck universes are closed under the cumulative hierarchy function. (Contributed by Rohan Ridenour, 8-Aug-2023)

Ref Expression
Hypotheses grur1cld.1 ( 𝜑𝐺 ∈ Univ )
grur1cld.2 ( 𝜑𝐴𝐺 )
Assertion grur1cld ( 𝜑 → ( 𝑅1𝐴 ) ∈ 𝐺 )

Proof

Step Hyp Ref Expression
1 grur1cld.1 ( 𝜑𝐺 ∈ Univ )
2 grur1cld.2 ( 𝜑𝐴𝐺 )
3 2 adantr ( ( 𝜑𝐴 ∈ On ) → 𝐴𝐺 )
4 eleq1 ( 𝑥 = ∅ → ( 𝑥𝐺 ↔ ∅ ∈ 𝐺 ) )
5 fveq2 ( 𝑥 = ∅ → ( 𝑅1𝑥 ) = ( 𝑅1 ‘ ∅ ) )
6 5 eleq1d ( 𝑥 = ∅ → ( ( 𝑅1𝑥 ) ∈ 𝐺 ↔ ( 𝑅1 ‘ ∅ ) ∈ 𝐺 ) )
7 4 6 imbi12d ( 𝑥 = ∅ → ( ( 𝑥𝐺 → ( 𝑅1𝑥 ) ∈ 𝐺 ) ↔ ( ∅ ∈ 𝐺 → ( 𝑅1 ‘ ∅ ) ∈ 𝐺 ) ) )
8 eleq1 ( 𝑥 = 𝑦 → ( 𝑥𝐺𝑦𝐺 ) )
9 fveq2 ( 𝑥 = 𝑦 → ( 𝑅1𝑥 ) = ( 𝑅1𝑦 ) )
10 9 eleq1d ( 𝑥 = 𝑦 → ( ( 𝑅1𝑥 ) ∈ 𝐺 ↔ ( 𝑅1𝑦 ) ∈ 𝐺 ) )
11 8 10 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐺 → ( 𝑅1𝑥 ) ∈ 𝐺 ) ↔ ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) )
12 eleq1 ( 𝑥 = suc 𝑦 → ( 𝑥𝐺 ↔ suc 𝑦𝐺 ) )
13 fveq2 ( 𝑥 = suc 𝑦 → ( 𝑅1𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) )
14 13 eleq1d ( 𝑥 = suc 𝑦 → ( ( 𝑅1𝑥 ) ∈ 𝐺 ↔ ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝐺 ) )
15 12 14 imbi12d ( 𝑥 = suc 𝑦 → ( ( 𝑥𝐺 → ( 𝑅1𝑥 ) ∈ 𝐺 ) ↔ ( suc 𝑦𝐺 → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝐺 ) ) )
16 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐺𝐴𝐺 ) )
17 fveq2 ( 𝑥 = 𝐴 → ( 𝑅1𝑥 ) = ( 𝑅1𝐴 ) )
18 17 eleq1d ( 𝑥 = 𝐴 → ( ( 𝑅1𝑥 ) ∈ 𝐺 ↔ ( 𝑅1𝐴 ) ∈ 𝐺 ) )
19 16 18 imbi12d ( 𝑥 = 𝐴 → ( ( 𝑥𝐺 → ( 𝑅1𝑥 ) ∈ 𝐺 ) ↔ ( 𝐴𝐺 → ( 𝑅1𝐴 ) ∈ 𝐺 ) ) )
20 r10 ( 𝑅1 ‘ ∅ ) = ∅
21 1 2 gru0eld ( 𝜑 → ∅ ∈ 𝐺 )
22 20 21 eqeltrid ( 𝜑 → ( 𝑅1 ‘ ∅ ) ∈ 𝐺 )
23 22 adantr ( ( 𝜑𝐴 ∈ On ) → ( 𝑅1 ‘ ∅ ) ∈ 𝐺 )
24 23 a1d ( ( 𝜑𝐴 ∈ On ) → ( ∅ ∈ 𝐺 → ( 𝑅1 ‘ ∅ ) ∈ 𝐺 ) )
25 simpl1 ( ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦𝐺 ) → ( 𝜑𝐴 ∈ On ) )
26 simpl2 ( ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦𝐺 ) → 𝑦 ∈ On )
27 1 adantr ( ( 𝜑𝐴 ∈ On ) → 𝐺 ∈ Univ )
28 25 27 syl ( ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦𝐺 ) → 𝐺 ∈ Univ )
29 simpr ( ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦𝐺 ) → suc 𝑦𝐺 )
30 sssucid 𝑦 ⊆ suc 𝑦
31 30 a1i ( ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦𝐺 ) → 𝑦 ⊆ suc 𝑦 )
32 gruss ( ( 𝐺 ∈ Univ ∧ suc 𝑦𝐺𝑦 ⊆ suc 𝑦 ) → 𝑦𝐺 )
33 28 29 31 32 syl3anc ( ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦𝐺 ) → 𝑦𝐺 )
34 simpl3 ( ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦𝐺 ) → ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) )
35 33 34 mpd ( ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦𝐺 ) → ( 𝑅1𝑦 ) ∈ 𝐺 )
36 r1suc ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1𝑦 ) )
37 36 3ad2ant2 ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑅1𝑦 ) ∈ 𝐺 ) → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1𝑦 ) )
38 27 3ad2ant1 ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑅1𝑦 ) ∈ 𝐺 ) → 𝐺 ∈ Univ )
39 simp3 ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑅1𝑦 ) ∈ 𝐺 ) → ( 𝑅1𝑦 ) ∈ 𝐺 )
40 grupw ( ( 𝐺 ∈ Univ ∧ ( 𝑅1𝑦 ) ∈ 𝐺 ) → 𝒫 ( 𝑅1𝑦 ) ∈ 𝐺 )
41 38 39 40 syl2anc ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑅1𝑦 ) ∈ 𝐺 ) → 𝒫 ( 𝑅1𝑦 ) ∈ 𝐺 )
42 37 41 eqeltrd ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑅1𝑦 ) ∈ 𝐺 ) → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝐺 )
43 25 26 35 42 syl3anc ( ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦𝐺 ) → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝐺 )
44 43 ex ( ( ( 𝜑𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) → ( suc 𝑦𝐺 → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝐺 ) )
45 simpr ( ( ( ( 𝜑𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥𝐺 ) → 𝑥𝐺 )
46 simpl2 ( ( ( ( 𝜑𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥𝐺 ) → Lim 𝑥 )
47 r1lim ( ( 𝑥𝐺 ∧ Lim 𝑥 ) → ( 𝑅1𝑥 ) = 𝑦𝑥 ( 𝑅1𝑦 ) )
48 45 46 47 syl2anc ( ( ( ( 𝜑𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥𝐺 ) → ( 𝑅1𝑥 ) = 𝑦𝑥 ( 𝑅1𝑦 ) )
49 simpl1 ( ( ( ( 𝜑𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥𝐺 ) → ( 𝜑𝐴 ∈ On ) )
50 49 27 syl ( ( ( ( 𝜑𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥𝐺 ) → 𝐺 ∈ Univ )
51 simpl3 ( ( ( ( 𝜑𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥𝐺 ) → ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) )
52 simpl1l ( ( ( ( 𝜑𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥𝐺 ) → 𝜑 )
53 simpl1 ( ( ( 𝜑 ∧ Lim 𝑥𝑥𝐺 ) ∧ 𝑦𝑥 ) → 𝜑 )
54 53 1 syl ( ( ( 𝜑 ∧ Lim 𝑥𝑥𝐺 ) ∧ 𝑦𝑥 ) → 𝐺 ∈ Univ )
55 simpl3 ( ( ( 𝜑 ∧ Lim 𝑥𝑥𝐺 ) ∧ 𝑦𝑥 ) → 𝑥𝐺 )
56 simpl2 ( ( ( 𝜑 ∧ Lim 𝑥𝑥𝐺 ) ∧ 𝑦𝑥 ) → Lim 𝑥 )
57 limord ( Lim 𝑥 → Ord 𝑥 )
58 56 57 syl ( ( ( 𝜑 ∧ Lim 𝑥𝑥𝐺 ) ∧ 𝑦𝑥 ) → Ord 𝑥 )
59 simpr ( ( ( 𝜑 ∧ Lim 𝑥𝑥𝐺 ) ∧ 𝑦𝑥 ) → 𝑦𝑥 )
60 ordelss ( ( Ord 𝑥𝑦𝑥 ) → 𝑦𝑥 )
61 58 59 60 syl2anc ( ( ( 𝜑 ∧ Lim 𝑥𝑥𝐺 ) ∧ 𝑦𝑥 ) → 𝑦𝑥 )
62 gruss ( ( 𝐺 ∈ Univ ∧ 𝑥𝐺𝑦𝑥 ) → 𝑦𝐺 )
63 54 55 61 62 syl3anc ( ( ( 𝜑 ∧ Lim 𝑥𝑥𝐺 ) ∧ 𝑦𝑥 ) → 𝑦𝐺 )
64 63 ralrimiva ( ( 𝜑 ∧ Lim 𝑥𝑥𝐺 ) → ∀ 𝑦𝑥 𝑦𝐺 )
65 52 46 45 64 syl3anc ( ( ( ( 𝜑𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥𝐺 ) → ∀ 𝑦𝑥 𝑦𝐺 )
66 ralim ( ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) → ( ∀ 𝑦𝑥 𝑦𝐺 → ∀ 𝑦𝑥 ( 𝑅1𝑦 ) ∈ 𝐺 ) )
67 51 65 66 sylc ( ( ( ( 𝜑𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥𝐺 ) → ∀ 𝑦𝑥 ( 𝑅1𝑦 ) ∈ 𝐺 )
68 gruiun ( ( 𝐺 ∈ Univ ∧ 𝑥𝐺 ∧ ∀ 𝑦𝑥 ( 𝑅1𝑦 ) ∈ 𝐺 ) → 𝑦𝑥 ( 𝑅1𝑦 ) ∈ 𝐺 )
69 50 45 67 68 syl3anc ( ( ( ( 𝜑𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥𝐺 ) → 𝑦𝑥 ( 𝑅1𝑦 ) ∈ 𝐺 )
70 48 69 eqeltrd ( ( ( ( 𝜑𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥𝐺 ) → ( 𝑅1𝑥 ) ∈ 𝐺 )
71 70 ex ( ( ( 𝜑𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦𝐺 → ( 𝑅1𝑦 ) ∈ 𝐺 ) ) → ( 𝑥𝐺 → ( 𝑅1𝑥 ) ∈ 𝐺 ) )
72 simpr ( ( 𝜑𝐴 ∈ On ) → 𝐴 ∈ On )
73 7 11 15 19 24 44 71 72 tfindsd ( ( 𝜑𝐴 ∈ On ) → ( 𝐴𝐺 → ( 𝑅1𝐴 ) ∈ 𝐺 ) )
74 3 73 mpd ( ( 𝜑𝐴 ∈ On ) → ( 𝑅1𝐴 ) ∈ 𝐺 )
75 r1fnon 𝑅1 Fn On
76 75 fndmi dom 𝑅1 = On
77 76 eleq2i ( 𝐴 ∈ dom 𝑅1𝐴 ∈ On )
78 ndmfv ( ¬ 𝐴 ∈ dom 𝑅1 → ( 𝑅1𝐴 ) = ∅ )
79 77 78 sylnbir ( ¬ 𝐴 ∈ On → ( 𝑅1𝐴 ) = ∅ )
80 79 adantl ( ( 𝜑 ∧ ¬ 𝐴 ∈ On ) → ( 𝑅1𝐴 ) = ∅ )
81 21 adantr ( ( 𝜑 ∧ ¬ 𝐴 ∈ On ) → ∅ ∈ 𝐺 )
82 80 81 eqeltrd ( ( 𝜑 ∧ ¬ 𝐴 ∈ On ) → ( 𝑅1𝐴 ) ∈ 𝐺 )
83 74 82 pm2.61dan ( 𝜑 → ( 𝑅1𝐴 ) ∈ 𝐺 )