| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grur1cld.1 |
⊢ ( 𝜑 → 𝐺 ∈ Univ ) |
| 2 |
|
grur1cld.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐺 ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ On ) → 𝐴 ∈ 𝐺 ) |
| 4 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝐺 ↔ ∅ ∈ 𝐺 ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) |
| 6 |
5
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝐺 ↔ ( 𝑅1 ‘ ∅ ) ∈ 𝐺 ) ) |
| 7 |
4 6
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ 𝐺 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝐺 ) ↔ ( ∅ ∈ 𝐺 → ( 𝑅1 ‘ ∅ ) ∈ 𝐺 ) ) ) |
| 8 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐺 ↔ 𝑦 ∈ 𝐺 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝐺 ↔ ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) |
| 11 |
8 10
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐺 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝐺 ) ↔ ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ) |
| 12 |
|
eleq1 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ 𝐺 ↔ suc 𝑦 ∈ 𝐺 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) |
| 14 |
13
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝐺 ↔ ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝐺 ) ) |
| 15 |
12 14
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ 𝐺 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝐺 ) ↔ ( suc 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝐺 ) ) ) |
| 16 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐺 ↔ 𝐴 ∈ 𝐺 ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝐴 ) ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝐺 ↔ ( 𝑅1 ‘ 𝐴 ) ∈ 𝐺 ) ) |
| 19 |
16 18
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐺 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝐺 ) ↔ ( 𝐴 ∈ 𝐺 → ( 𝑅1 ‘ 𝐴 ) ∈ 𝐺 ) ) ) |
| 20 |
|
r10 |
⊢ ( 𝑅1 ‘ ∅ ) = ∅ |
| 21 |
1 2
|
gru0eld |
⊢ ( 𝜑 → ∅ ∈ 𝐺 ) |
| 22 |
20 21
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑅1 ‘ ∅ ) ∈ 𝐺 ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ On ) → ( 𝑅1 ‘ ∅ ) ∈ 𝐺 ) |
| 24 |
23
|
a1d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐺 → ( 𝑅1 ‘ ∅ ) ∈ 𝐺 ) ) |
| 25 |
|
simpl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦 ∈ 𝐺 ) → ( 𝜑 ∧ 𝐴 ∈ On ) ) |
| 26 |
|
simpl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦 ∈ 𝐺 ) → 𝑦 ∈ On ) |
| 27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ On ) → 𝐺 ∈ Univ ) |
| 28 |
25 27
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦 ∈ 𝐺 ) → 𝐺 ∈ Univ ) |
| 29 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦 ∈ 𝐺 ) → suc 𝑦 ∈ 𝐺 ) |
| 30 |
|
sssucid |
⊢ 𝑦 ⊆ suc 𝑦 |
| 31 |
30
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦 ∈ 𝐺 ) → 𝑦 ⊆ suc 𝑦 ) |
| 32 |
|
gruss |
⊢ ( ( 𝐺 ∈ Univ ∧ suc 𝑦 ∈ 𝐺 ∧ 𝑦 ⊆ suc 𝑦 ) → 𝑦 ∈ 𝐺 ) |
| 33 |
28 29 31 32
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦 ∈ 𝐺 ) → 𝑦 ∈ 𝐺 ) |
| 34 |
|
simpl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦 ∈ 𝐺 ) → ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) |
| 35 |
33 34
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦 ∈ 𝐺 ) → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) |
| 36 |
|
r1suc |
⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) |
| 37 |
36
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) |
| 38 |
27
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) → 𝐺 ∈ Univ ) |
| 39 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) |
| 40 |
|
grupw |
⊢ ( ( 𝐺 ∈ Univ ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) → 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) |
| 41 |
38 39 40
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) → 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) |
| 42 |
37 41
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝐺 ) |
| 43 |
25 26 35 42
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ suc 𝑦 ∈ 𝐺 ) → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝐺 ) |
| 44 |
43
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ 𝑦 ∈ On ∧ ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) → ( suc 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝐺 ) ) |
| 45 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥 ∈ 𝐺 ) → 𝑥 ∈ 𝐺 ) |
| 46 |
|
simpl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥 ∈ 𝐺 ) → Lim 𝑥 ) |
| 47 |
|
r1lim |
⊢ ( ( 𝑥 ∈ 𝐺 ∧ Lim 𝑥 ) → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
| 48 |
45 46 47
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥 ∈ 𝐺 ) → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ) |
| 49 |
|
simpl1 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥 ∈ 𝐺 ) → ( 𝜑 ∧ 𝐴 ∈ On ) ) |
| 50 |
49 27
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥 ∈ 𝐺 ) → 𝐺 ∈ Univ ) |
| 51 |
|
simpl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥 ∈ 𝐺 ) → ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) |
| 52 |
|
simpl1l |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥 ∈ 𝐺 ) → 𝜑 ) |
| 53 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ Lim 𝑥 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝑥 ) → 𝜑 ) |
| 54 |
53 1
|
syl |
⊢ ( ( ( 𝜑 ∧ Lim 𝑥 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝑥 ) → 𝐺 ∈ Univ ) |
| 55 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ Lim 𝑥 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ 𝐺 ) |
| 56 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ Lim 𝑥 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝑥 ) → Lim 𝑥 ) |
| 57 |
|
limord |
⊢ ( Lim 𝑥 → Ord 𝑥 ) |
| 58 |
56 57
|
syl |
⊢ ( ( ( 𝜑 ∧ Lim 𝑥 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝑥 ) → Ord 𝑥 ) |
| 59 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ Lim 𝑥 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
| 60 |
|
ordelss |
⊢ ( ( Ord 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ⊆ 𝑥 ) |
| 61 |
58 59 60
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ Lim 𝑥 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ⊆ 𝑥 ) |
| 62 |
|
gruss |
⊢ ( ( 𝐺 ∈ Univ ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ∈ 𝐺 ) |
| 63 |
54 55 61 62
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ Lim 𝑥 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝐺 ) |
| 64 |
63
|
ralrimiva |
⊢ ( ( 𝜑 ∧ Lim 𝑥 ∧ 𝑥 ∈ 𝐺 ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐺 ) |
| 65 |
52 46 45 64
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥 ∈ 𝐺 ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐺 ) |
| 66 |
|
ralim |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐺 → ∀ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) |
| 67 |
51 65 66
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥 ∈ 𝐺 ) → ∀ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) |
| 68 |
|
gruiun |
⊢ ( ( 𝐺 ∈ Univ ∧ 𝑥 ∈ 𝐺 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) → ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) |
| 69 |
50 45 67 68
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥 ∈ 𝐺 ) → ∪ 𝑦 ∈ 𝑥 ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) |
| 70 |
48 69
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) ∧ 𝑥 ∈ 𝐺 ) → ( 𝑅1 ‘ 𝑥 ) ∈ 𝐺 ) |
| 71 |
70
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐺 → ( 𝑅1 ‘ 𝑦 ) ∈ 𝐺 ) ) → ( 𝑥 ∈ 𝐺 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝐺 ) ) |
| 72 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ On ) → 𝐴 ∈ On ) |
| 73 |
7 11 15 19 24 44 71 72
|
tfindsd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ On ) → ( 𝐴 ∈ 𝐺 → ( 𝑅1 ‘ 𝐴 ) ∈ 𝐺 ) ) |
| 74 |
3 73
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ On ) → ( 𝑅1 ‘ 𝐴 ) ∈ 𝐺 ) |
| 75 |
|
r1fnon |
⊢ 𝑅1 Fn On |
| 76 |
75
|
fndmi |
⊢ dom 𝑅1 = On |
| 77 |
76
|
eleq2i |
⊢ ( 𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On ) |
| 78 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
| 79 |
77 78
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
| 80 |
79
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ On ) → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
| 81 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ On ) → ∅ ∈ 𝐺 ) |
| 82 |
80 81
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ On ) → ( 𝑅1 ‘ 𝐴 ) ∈ 𝐺 ) |
| 83 |
74 82
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝑅1 ‘ 𝐴 ) ∈ 𝐺 ) |