Step |
Hyp |
Ref |
Expression |
1 |
|
tfindsd.1 |
⊢ ( 𝑥 = ∅ → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
tfindsd.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
tfindsd.3 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜓 ↔ 𝜏 ) ) |
4 |
|
tfindsd.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜂 ) ) |
5 |
|
tfindsd.5 |
⊢ ( 𝜑 → 𝜒 ) |
6 |
|
tfindsd.6 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ On ∧ 𝜃 ) → 𝜏 ) |
7 |
|
tfindsd.7 |
⊢ ( ( 𝜑 ∧ Lim 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 𝜃 ) → 𝜓 ) |
8 |
|
tfindsd.8 |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
9 |
6
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ On → ( 𝜃 → 𝜏 ) ) ) |
10 |
9
|
com12 |
⊢ ( 𝑦 ∈ On → ( 𝜑 → ( 𝜃 → 𝜏 ) ) ) |
11 |
7
|
3exp |
⊢ ( 𝜑 → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 𝜃 → 𝜓 ) ) ) |
12 |
11
|
com12 |
⊢ ( Lim 𝑥 → ( 𝜑 → ( ∀ 𝑦 ∈ 𝑥 𝜃 → 𝜓 ) ) ) |
13 |
1 2 3 4 5 10 12
|
tfinds3 |
⊢ ( 𝐴 ∈ On → ( 𝜑 → 𝜂 ) ) |
14 |
8 13
|
mpcom |
⊢ ( 𝜑 → 𝜂 ) |