Metamath Proof Explorer


Theorem tfindsd

Description: Deduction associated with tfinds . (Contributed by Rohan Ridenour, 8-Aug-2023)

Ref Expression
Hypotheses tfindsd.1 ( 𝑥 = ∅ → ( 𝜓𝜒 ) )
tfindsd.2 ( 𝑥 = 𝑦 → ( 𝜓𝜃 ) )
tfindsd.3 ( 𝑥 = suc 𝑦 → ( 𝜓𝜏 ) )
tfindsd.4 ( 𝑥 = 𝐴 → ( 𝜓𝜂 ) )
tfindsd.5 ( 𝜑𝜒 )
tfindsd.6 ( ( 𝜑𝑦 ∈ On ∧ 𝜃 ) → 𝜏 )
tfindsd.7 ( ( 𝜑 ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 𝜃 ) → 𝜓 )
tfindsd.8 ( 𝜑𝐴 ∈ On )
Assertion tfindsd ( 𝜑𝜂 )

Proof

Step Hyp Ref Expression
1 tfindsd.1 ( 𝑥 = ∅ → ( 𝜓𝜒 ) )
2 tfindsd.2 ( 𝑥 = 𝑦 → ( 𝜓𝜃 ) )
3 tfindsd.3 ( 𝑥 = suc 𝑦 → ( 𝜓𝜏 ) )
4 tfindsd.4 ( 𝑥 = 𝐴 → ( 𝜓𝜂 ) )
5 tfindsd.5 ( 𝜑𝜒 )
6 tfindsd.6 ( ( 𝜑𝑦 ∈ On ∧ 𝜃 ) → 𝜏 )
7 tfindsd.7 ( ( 𝜑 ∧ Lim 𝑥 ∧ ∀ 𝑦𝑥 𝜃 ) → 𝜓 )
8 tfindsd.8 ( 𝜑𝐴 ∈ On )
9 6 3exp ( 𝜑 → ( 𝑦 ∈ On → ( 𝜃𝜏 ) ) )
10 9 com12 ( 𝑦 ∈ On → ( 𝜑 → ( 𝜃𝜏 ) ) )
11 7 3exp ( 𝜑 → ( Lim 𝑥 → ( ∀ 𝑦𝑥 𝜃𝜓 ) ) )
12 11 com12 ( Lim 𝑥 → ( 𝜑 → ( ∀ 𝑦𝑥 𝜃𝜓 ) ) )
13 1 2 3 4 5 10 12 tfinds3 ( 𝐴 ∈ On → ( 𝜑𝜂 ) )
14 8 13 mpcom ( 𝜑𝜂 )