Description: Deduction associated with tfinds . (Contributed by Rohan Ridenour, 8-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tfindsd.1 | |- ( x = (/) -> ( ps <-> ch ) ) |
|
tfindsd.2 | |- ( x = y -> ( ps <-> th ) ) |
||
tfindsd.3 | |- ( x = suc y -> ( ps <-> ta ) ) |
||
tfindsd.4 | |- ( x = A -> ( ps <-> et ) ) |
||
tfindsd.5 | |- ( ph -> ch ) |
||
tfindsd.6 | |- ( ( ph /\ y e. On /\ th ) -> ta ) |
||
tfindsd.7 | |- ( ( ph /\ Lim x /\ A. y e. x th ) -> ps ) |
||
tfindsd.8 | |- ( ph -> A e. On ) |
||
Assertion | tfindsd | |- ( ph -> et ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfindsd.1 | |- ( x = (/) -> ( ps <-> ch ) ) |
|
2 | tfindsd.2 | |- ( x = y -> ( ps <-> th ) ) |
|
3 | tfindsd.3 | |- ( x = suc y -> ( ps <-> ta ) ) |
|
4 | tfindsd.4 | |- ( x = A -> ( ps <-> et ) ) |
|
5 | tfindsd.5 | |- ( ph -> ch ) |
|
6 | tfindsd.6 | |- ( ( ph /\ y e. On /\ th ) -> ta ) |
|
7 | tfindsd.7 | |- ( ( ph /\ Lim x /\ A. y e. x th ) -> ps ) |
|
8 | tfindsd.8 | |- ( ph -> A e. On ) |
|
9 | 6 | 3exp | |- ( ph -> ( y e. On -> ( th -> ta ) ) ) |
10 | 9 | com12 | |- ( y e. On -> ( ph -> ( th -> ta ) ) ) |
11 | 7 | 3exp | |- ( ph -> ( Lim x -> ( A. y e. x th -> ps ) ) ) |
12 | 11 | com12 | |- ( Lim x -> ( ph -> ( A. y e. x th -> ps ) ) ) |
13 | 1 2 3 4 5 10 12 | tfinds3 | |- ( A e. On -> ( ph -> et ) ) |
14 | 8 13 | mpcom | |- ( ph -> et ) |