| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfindsd.1 |
|- ( x = (/) -> ( ps <-> ch ) ) |
| 2 |
|
tfindsd.2 |
|- ( x = y -> ( ps <-> th ) ) |
| 3 |
|
tfindsd.3 |
|- ( x = suc y -> ( ps <-> ta ) ) |
| 4 |
|
tfindsd.4 |
|- ( x = A -> ( ps <-> et ) ) |
| 5 |
|
tfindsd.5 |
|- ( ph -> ch ) |
| 6 |
|
tfindsd.6 |
|- ( ( ph /\ y e. On /\ th ) -> ta ) |
| 7 |
|
tfindsd.7 |
|- ( ( ph /\ Lim x /\ A. y e. x th ) -> ps ) |
| 8 |
|
tfindsd.8 |
|- ( ph -> A e. On ) |
| 9 |
6
|
3exp |
|- ( ph -> ( y e. On -> ( th -> ta ) ) ) |
| 10 |
9
|
com12 |
|- ( y e. On -> ( ph -> ( th -> ta ) ) ) |
| 11 |
7
|
3exp |
|- ( ph -> ( Lim x -> ( A. y e. x th -> ps ) ) ) |
| 12 |
11
|
com12 |
|- ( Lim x -> ( ph -> ( A. y e. x th -> ps ) ) ) |
| 13 |
1 2 3 4 5 10 12
|
tfinds3 |
|- ( A e. On -> ( ph -> et ) ) |
| 14 |
8 13
|
mpcom |
|- ( ph -> et ) |