Metamath Proof Explorer


Theorem tfindsd

Description: Deduction associated with tfinds . (Contributed by Rohan Ridenour, 8-Aug-2023)

Ref Expression
Hypotheses tfindsd.1 x=ψχ
tfindsd.2 x=yψθ
tfindsd.3 x=sucyψτ
tfindsd.4 x=Aψη
tfindsd.5 φχ
tfindsd.6 φyOnθτ
tfindsd.7 φLimxyxθψ
tfindsd.8 φAOn
Assertion tfindsd φη

Proof

Step Hyp Ref Expression
1 tfindsd.1 x=ψχ
2 tfindsd.2 x=yψθ
3 tfindsd.3 x=sucyψτ
4 tfindsd.4 x=Aψη
5 tfindsd.5 φχ
6 tfindsd.6 φyOnθτ
7 tfindsd.7 φLimxyxθψ
8 tfindsd.8 φAOn
9 6 3exp φyOnθτ
10 9 com12 yOnφθτ
11 7 3exp φLimxyxθψ
12 11 com12 Limxφyxθψ
13 1 2 3 4 5 10 12 tfinds3 AOnφη
14 8 13 mpcom φη