Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Misc
tfindsd
Next ⟩
Monoid rings
Metamath Proof Explorer
Ascii
Unicode
Theorem
tfindsd
Description:
Deduction associated with
tfinds
.
(Contributed by
Rohan Ridenour
, 8-Aug-2023)
Ref
Expression
Hypotheses
tfindsd.1
⊢
x
=
∅
→
ψ
↔
χ
tfindsd.2
⊢
x
=
y
→
ψ
↔
θ
tfindsd.3
⊢
x
=
suc
⁡
y
→
ψ
↔
τ
tfindsd.4
⊢
x
=
A
→
ψ
↔
η
tfindsd.5
⊢
φ
→
χ
tfindsd.6
⊢
φ
∧
y
∈
On
∧
θ
→
τ
tfindsd.7
⊢
φ
∧
Lim
⁡
x
∧
∀
y
∈
x
θ
→
ψ
tfindsd.8
⊢
φ
→
A
∈
On
Assertion
tfindsd
⊢
φ
→
η
Proof
Step
Hyp
Ref
Expression
1
tfindsd.1
⊢
x
=
∅
→
ψ
↔
χ
2
tfindsd.2
⊢
x
=
y
→
ψ
↔
θ
3
tfindsd.3
⊢
x
=
suc
⁡
y
→
ψ
↔
τ
4
tfindsd.4
⊢
x
=
A
→
ψ
↔
η
5
tfindsd.5
⊢
φ
→
χ
6
tfindsd.6
⊢
φ
∧
y
∈
On
∧
θ
→
τ
7
tfindsd.7
⊢
φ
∧
Lim
⁡
x
∧
∀
y
∈
x
θ
→
ψ
8
tfindsd.8
⊢
φ
→
A
∈
On
9
6
3exp
⊢
φ
→
y
∈
On
→
θ
→
τ
10
9
com12
⊢
y
∈
On
→
φ
→
θ
→
τ
11
7
3exp
⊢
φ
→
Lim
⁡
x
→
∀
y
∈
x
θ
→
ψ
12
11
com12
⊢
Lim
⁡
x
→
φ
→
∀
y
∈
x
θ
→
ψ
13
1
2
3
4
5
10
12
tfinds3
⊢
A
∈
On
→
φ
→
η
14
8
13
mpcom
⊢
φ
→
η