Metamath Proof Explorer


Theorem tfinds3

Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. (Contributed by NM, 6-Jan-2005) (Revised by David Abernethy, 21-Jun-2011)

Ref Expression
Hypotheses tfinds3.1 x=φψ
tfinds3.2 x=yφχ
tfinds3.3 x=sucyφθ
tfinds3.4 x=Aφτ
tfinds3.5 ηψ
tfinds3.6 yOnηχθ
tfinds3.7 Limxηyxχφ
Assertion tfinds3 AOnητ

Proof

Step Hyp Ref Expression
1 tfinds3.1 x=φψ
2 tfinds3.2 x=yφχ
3 tfinds3.3 x=sucyφθ
4 tfinds3.4 x=Aφτ
5 tfinds3.5 ηψ
6 tfinds3.6 yOnηχθ
7 tfinds3.7 Limxηyxχφ
8 1 imbi2d x=ηφηψ
9 2 imbi2d x=yηφηχ
10 3 imbi2d x=sucyηφηθ
11 4 imbi2d x=Aηφητ
12 6 a2d yOnηχηθ
13 r19.21v yxηχηyxχ
14 7 a2d Limxηyxχηφ
15 13 14 biimtrid Limxyxηχηφ
16 8 9 10 11 5 12 15 tfinds AOnητ