Description: Grothendieck universes are closed under the rank function. (Contributed by Rohan Ridenour, 9-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grurankcld.1 | ⊢ ( 𝜑 → 𝐺 ∈ Univ ) | |
| grurankcld.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐺 ) | ||
| Assertion | grurankcld | ⊢ ( 𝜑 → ( rank ‘ 𝐴 ) ∈ 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grurankcld.1 | ⊢ ( 𝜑 → 𝐺 ∈ Univ ) | |
| 2 | grurankcld.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐺 ) | |
| 3 | 1 | elexd | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 4 | unir1 | ⊢ ∪ ( 𝑅1 “ On ) = V | |
| 5 | 3 4 | eleqtrrdi | ⊢ ( 𝜑 → 𝐺 ∈ ∪ ( 𝑅1 “ On ) ) |
| 6 | eqid | ⊢ ( 𝐺 ∩ On ) = ( 𝐺 ∩ On ) | |
| 7 | 6 | grur1 | ⊢ ( ( 𝐺 ∈ Univ ∧ 𝐺 ∈ ∪ ( 𝑅1 “ On ) ) → 𝐺 = ( 𝑅1 ‘ ( 𝐺 ∩ On ) ) ) |
| 8 | 1 5 7 | syl2anc | ⊢ ( 𝜑 → 𝐺 = ( 𝑅1 ‘ ( 𝐺 ∩ On ) ) ) |
| 9 | 2 8 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑅1 ‘ ( 𝐺 ∩ On ) ) ) |
| 10 | 9 | r1rankcld | ⊢ ( 𝜑 → ( rank ‘ 𝐴 ) ∈ ( 𝑅1 ‘ ( 𝐺 ∩ On ) ) ) |
| 11 | 10 8 | eleqtrrd | ⊢ ( 𝜑 → ( rank ‘ 𝐴 ) ∈ 𝐺 ) |