Metamath Proof Explorer


Theorem grurankcld

Description: Grothendieck universes are closed under the rank function. (Contributed by Rohan Ridenour, 9-Aug-2023)

Ref Expression
Hypotheses grurankcld.1 ( 𝜑𝐺 ∈ Univ )
grurankcld.2 ( 𝜑𝐴𝐺 )
Assertion grurankcld ( 𝜑 → ( rank ‘ 𝐴 ) ∈ 𝐺 )

Proof

Step Hyp Ref Expression
1 grurankcld.1 ( 𝜑𝐺 ∈ Univ )
2 grurankcld.2 ( 𝜑𝐴𝐺 )
3 1 elexd ( 𝜑𝐺 ∈ V )
4 unir1 ( 𝑅1 “ On ) = V
5 3 4 eleqtrrdi ( 𝜑𝐺 ( 𝑅1 “ On ) )
6 eqid ( 𝐺 ∩ On ) = ( 𝐺 ∩ On )
7 6 grur1 ( ( 𝐺 ∈ Univ ∧ 𝐺 ( 𝑅1 “ On ) ) → 𝐺 = ( 𝑅1 ‘ ( 𝐺 ∩ On ) ) )
8 1 5 7 syl2anc ( 𝜑𝐺 = ( 𝑅1 ‘ ( 𝐺 ∩ On ) ) )
9 2 8 eleqtrd ( 𝜑𝐴 ∈ ( 𝑅1 ‘ ( 𝐺 ∩ On ) ) )
10 9 r1rankcld ( 𝜑 → ( rank ‘ 𝐴 ) ∈ ( 𝑅1 ‘ ( 𝐺 ∩ On ) ) )
11 10 8 eleqtrrd ( 𝜑 → ( rank ‘ 𝐴 ) ∈ 𝐺 )