Step |
Hyp |
Ref |
Expression |
1 |
|
gruina.1 |
⊢ 𝐴 = ( 𝑈 ∩ On ) |
2 |
|
nss |
⊢ ( ¬ 𝑈 ⊆ ( 𝑅1 ‘ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
3 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑥 → ( ( rank ‘ 𝑦 ) = 𝐴 ↔ ( rank ‘ 𝑥 ) = 𝐴 ) ) |
4 |
3
|
rspcev |
⊢ ( ( 𝑥 ∈ 𝑈 ∧ ( rank ‘ 𝑥 ) = 𝐴 ) → ∃ 𝑦 ∈ 𝑈 ( rank ‘ 𝑦 ) = 𝐴 ) |
5 |
4
|
ex |
⊢ ( 𝑥 ∈ 𝑈 → ( ( rank ‘ 𝑥 ) = 𝐴 → ∃ 𝑦 ∈ 𝑈 ( rank ‘ 𝑦 ) = 𝐴 ) ) |
6 |
5
|
ad2antrl |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → ( ( rank ‘ 𝑥 ) = 𝐴 → ∃ 𝑦 ∈ 𝑈 ( rank ‘ 𝑦 ) = 𝐴 ) ) |
7 |
|
simplr |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) |
8 |
|
simprl |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → 𝑥 ∈ 𝑈 ) |
9 |
|
r1elssi |
⊢ ( 𝑈 ∈ ∪ ( 𝑅1 “ On ) → 𝑈 ⊆ ∪ ( 𝑅1 “ On ) ) |
10 |
9
|
sseld |
⊢ ( 𝑈 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) ) |
11 |
7 8 10
|
sylc |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
12 |
|
tcrank |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝑥 ) = ( rank “ ( TC ‘ 𝑥 ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → ( rank ‘ 𝑥 ) = ( rank “ ( TC ‘ 𝑥 ) ) ) |
14 |
13
|
eleq2d |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → ( 𝐴 ∈ ( rank ‘ 𝑥 ) ↔ 𝐴 ∈ ( rank “ ( TC ‘ 𝑥 ) ) ) ) |
15 |
|
gruelss |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ⊆ 𝑈 ) |
16 |
|
grutr |
⊢ ( 𝑈 ∈ Univ → Tr 𝑈 ) |
17 |
16
|
adantr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → Tr 𝑈 ) |
18 |
|
vex |
⊢ 𝑥 ∈ V |
19 |
|
tcmin |
⊢ ( 𝑥 ∈ V → ( ( 𝑥 ⊆ 𝑈 ∧ Tr 𝑈 ) → ( TC ‘ 𝑥 ) ⊆ 𝑈 ) ) |
20 |
18 19
|
ax-mp |
⊢ ( ( 𝑥 ⊆ 𝑈 ∧ Tr 𝑈 ) → ( TC ‘ 𝑥 ) ⊆ 𝑈 ) |
21 |
15 17 20
|
syl2anc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → ( TC ‘ 𝑥 ) ⊆ 𝑈 ) |
22 |
|
rankf |
⊢ rank : ∪ ( 𝑅1 “ On ) ⟶ On |
23 |
|
ffun |
⊢ ( rank : ∪ ( 𝑅1 “ On ) ⟶ On → Fun rank ) |
24 |
22 23
|
ax-mp |
⊢ Fun rank |
25 |
|
fvelima |
⊢ ( ( Fun rank ∧ 𝐴 ∈ ( rank “ ( TC ‘ 𝑥 ) ) ) → ∃ 𝑦 ∈ ( TC ‘ 𝑥 ) ( rank ‘ 𝑦 ) = 𝐴 ) |
26 |
24 25
|
mpan |
⊢ ( 𝐴 ∈ ( rank “ ( TC ‘ 𝑥 ) ) → ∃ 𝑦 ∈ ( TC ‘ 𝑥 ) ( rank ‘ 𝑦 ) = 𝐴 ) |
27 |
|
ssrexv |
⊢ ( ( TC ‘ 𝑥 ) ⊆ 𝑈 → ( ∃ 𝑦 ∈ ( TC ‘ 𝑥 ) ( rank ‘ 𝑦 ) = 𝐴 → ∃ 𝑦 ∈ 𝑈 ( rank ‘ 𝑦 ) = 𝐴 ) ) |
28 |
21 26 27
|
syl2im |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → ( 𝐴 ∈ ( rank “ ( TC ‘ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑈 ( rank ‘ 𝑦 ) = 𝐴 ) ) |
29 |
28
|
ad2ant2r |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → ( 𝐴 ∈ ( rank “ ( TC ‘ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑈 ( rank ‘ 𝑦 ) = 𝐴 ) ) |
30 |
14 29
|
sylbid |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → ( 𝐴 ∈ ( rank ‘ 𝑥 ) → ∃ 𝑦 ∈ 𝑈 ( rank ‘ 𝑦 ) = 𝐴 ) ) |
31 |
|
simprr |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
32 |
|
ne0i |
⊢ ( 𝑥 ∈ 𝑈 → 𝑈 ≠ ∅ ) |
33 |
1
|
gruina |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → 𝐴 ∈ Inacc ) |
34 |
32 33
|
sylan2 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → 𝐴 ∈ Inacc ) |
35 |
|
inawina |
⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ Inaccw ) |
36 |
|
winaon |
⊢ ( 𝐴 ∈ Inaccw → 𝐴 ∈ On ) |
37 |
34 35 36
|
3syl |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → 𝐴 ∈ On ) |
38 |
|
r1fnon |
⊢ 𝑅1 Fn On |
39 |
|
fndm |
⊢ ( 𝑅1 Fn On → dom 𝑅1 = On ) |
40 |
38 39
|
ax-mp |
⊢ dom 𝑅1 = On |
41 |
37 40
|
eleqtrrdi |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → 𝐴 ∈ dom 𝑅1 ) |
42 |
41
|
ad2ant2r |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → 𝐴 ∈ dom 𝑅1 ) |
43 |
|
rankr1ag |
⊢ ( ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ dom 𝑅1 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) |
44 |
11 42 43
|
syl2anc |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) |
45 |
31 44
|
mtbid |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → ¬ ( rank ‘ 𝑥 ) ∈ 𝐴 ) |
46 |
|
rankon |
⊢ ( rank ‘ 𝑥 ) ∈ On |
47 |
|
eloni |
⊢ ( ( rank ‘ 𝑥 ) ∈ On → Ord ( rank ‘ 𝑥 ) ) |
48 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
49 |
|
ordtri3or |
⊢ ( ( Ord ( rank ‘ 𝑥 ) ∧ Ord 𝐴 ) → ( ( rank ‘ 𝑥 ) ∈ 𝐴 ∨ ( rank ‘ 𝑥 ) = 𝐴 ∨ 𝐴 ∈ ( rank ‘ 𝑥 ) ) ) |
50 |
47 48 49
|
syl2an |
⊢ ( ( ( rank ‘ 𝑥 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( rank ‘ 𝑥 ) ∈ 𝐴 ∨ ( rank ‘ 𝑥 ) = 𝐴 ∨ 𝐴 ∈ ( rank ‘ 𝑥 ) ) ) |
51 |
46 37 50
|
sylancr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → ( ( rank ‘ 𝑥 ) ∈ 𝐴 ∨ ( rank ‘ 𝑥 ) = 𝐴 ∨ 𝐴 ∈ ( rank ‘ 𝑥 ) ) ) |
52 |
|
3orass |
⊢ ( ( ( rank ‘ 𝑥 ) ∈ 𝐴 ∨ ( rank ‘ 𝑥 ) = 𝐴 ∨ 𝐴 ∈ ( rank ‘ 𝑥 ) ) ↔ ( ( rank ‘ 𝑥 ) ∈ 𝐴 ∨ ( ( rank ‘ 𝑥 ) = 𝐴 ∨ 𝐴 ∈ ( rank ‘ 𝑥 ) ) ) ) |
53 |
51 52
|
sylib |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → ( ( rank ‘ 𝑥 ) ∈ 𝐴 ∨ ( ( rank ‘ 𝑥 ) = 𝐴 ∨ 𝐴 ∈ ( rank ‘ 𝑥 ) ) ) ) |
54 |
53
|
ord |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → ( ¬ ( rank ‘ 𝑥 ) ∈ 𝐴 → ( ( rank ‘ 𝑥 ) = 𝐴 ∨ 𝐴 ∈ ( rank ‘ 𝑥 ) ) ) ) |
55 |
54
|
ad2ant2r |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → ( ¬ ( rank ‘ 𝑥 ) ∈ 𝐴 → ( ( rank ‘ 𝑥 ) = 𝐴 ∨ 𝐴 ∈ ( rank ‘ 𝑥 ) ) ) ) |
56 |
45 55
|
mpd |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → ( ( rank ‘ 𝑥 ) = 𝐴 ∨ 𝐴 ∈ ( rank ‘ 𝑥 ) ) ) |
57 |
6 30 56
|
mpjaod |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) → ∃ 𝑦 ∈ 𝑈 ( rank ‘ 𝑦 ) = 𝐴 ) |
58 |
57
|
ex |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) → ( ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ∃ 𝑦 ∈ 𝑈 ( rank ‘ 𝑦 ) = 𝐴 ) ) |
59 |
58
|
exlimdv |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) → ∃ 𝑦 ∈ 𝑈 ( rank ‘ 𝑦 ) = 𝐴 ) ) |
60 |
2 59
|
syl5bi |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) → ( ¬ 𝑈 ⊆ ( 𝑅1 ‘ 𝐴 ) → ∃ 𝑦 ∈ 𝑈 ( rank ‘ 𝑦 ) = 𝐴 ) ) |
61 |
|
simpll |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ ( rank ‘ 𝑦 ) = 𝐴 ) ) → 𝑈 ∈ Univ ) |
62 |
|
ne0i |
⊢ ( 𝑦 ∈ 𝑈 → 𝑈 ≠ ∅ ) |
63 |
62 33
|
sylan2 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑦 ∈ 𝑈 ) → 𝐴 ∈ Inacc ) |
64 |
63
|
ad2ant2r |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ ( rank ‘ 𝑦 ) = 𝐴 ) ) → 𝐴 ∈ Inacc ) |
65 |
64 35 36
|
3syl |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ ( rank ‘ 𝑦 ) = 𝐴 ) ) → 𝐴 ∈ On ) |
66 |
|
simprl |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ ( rank ‘ 𝑦 ) = 𝐴 ) ) → 𝑦 ∈ 𝑈 ) |
67 |
|
fveq2 |
⊢ ( ( rank ‘ 𝑦 ) = 𝐴 → ( cf ‘ ( rank ‘ 𝑦 ) ) = ( cf ‘ 𝐴 ) ) |
68 |
67
|
ad2antll |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ ( rank ‘ 𝑦 ) = 𝐴 ) ) → ( cf ‘ ( rank ‘ 𝑦 ) ) = ( cf ‘ 𝐴 ) ) |
69 |
|
elina |
⊢ ( 𝐴 ∈ Inacc ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 ) ) |
70 |
69
|
simp2bi |
⊢ ( 𝐴 ∈ Inacc → ( cf ‘ 𝐴 ) = 𝐴 ) |
71 |
64 70
|
syl |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ ( rank ‘ 𝑦 ) = 𝐴 ) ) → ( cf ‘ 𝐴 ) = 𝐴 ) |
72 |
68 71
|
eqtrd |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ ( rank ‘ 𝑦 ) = 𝐴 ) ) → ( cf ‘ ( rank ‘ 𝑦 ) ) = 𝐴 ) |
73 |
|
rankcf |
⊢ ¬ 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) |
74 |
|
fvex |
⊢ ( cf ‘ ( rank ‘ 𝑦 ) ) ∈ V |
75 |
|
vex |
⊢ 𝑦 ∈ V |
76 |
|
domtri |
⊢ ( ( ( cf ‘ ( rank ‘ 𝑦 ) ) ∈ V ∧ 𝑦 ∈ V ) → ( ( cf ‘ ( rank ‘ 𝑦 ) ) ≼ 𝑦 ↔ ¬ 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) ) ) |
77 |
74 75 76
|
mp2an |
⊢ ( ( cf ‘ ( rank ‘ 𝑦 ) ) ≼ 𝑦 ↔ ¬ 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) ) |
78 |
73 77
|
mpbir |
⊢ ( cf ‘ ( rank ‘ 𝑦 ) ) ≼ 𝑦 |
79 |
72 78
|
eqbrtrrdi |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ ( rank ‘ 𝑦 ) = 𝐴 ) ) → 𝐴 ≼ 𝑦 ) |
80 |
|
grudomon |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ On ∧ ( 𝑦 ∈ 𝑈 ∧ 𝐴 ≼ 𝑦 ) ) → 𝐴 ∈ 𝑈 ) |
81 |
61 65 66 79 80
|
syl112anc |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ ( rank ‘ 𝑦 ) = 𝐴 ) ) → 𝐴 ∈ 𝑈 ) |
82 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝑈 ∩ On ) ↔ ( 𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On ) ) |
83 |
82
|
biimpri |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On ) → 𝐴 ∈ ( 𝑈 ∩ On ) ) |
84 |
83 1
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On ) → 𝐴 ∈ 𝐴 ) |
85 |
|
ordirr |
⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) |
86 |
48 85
|
syl |
⊢ ( 𝐴 ∈ On → ¬ 𝐴 ∈ 𝐴 ) |
87 |
86
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On ) → ¬ 𝐴 ∈ 𝐴 ) |
88 |
84 87
|
pm2.21dd |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐴 ∈ On ) → 𝑈 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
89 |
81 65 88
|
syl2anc |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ ( rank ‘ 𝑦 ) = 𝐴 ) ) → 𝑈 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
90 |
89
|
rexlimdvaa |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) → ( ∃ 𝑦 ∈ 𝑈 ( rank ‘ 𝑦 ) = 𝐴 → 𝑈 ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
91 |
60 90
|
syld |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) → ( ¬ 𝑈 ⊆ ( 𝑅1 ‘ 𝐴 ) → 𝑈 ⊆ ( 𝑅1 ‘ 𝐴 ) ) ) |
92 |
91
|
pm2.18d |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) → 𝑈 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
93 |
1
|
grur1a |
⊢ ( 𝑈 ∈ Univ → ( 𝑅1 ‘ 𝐴 ) ⊆ 𝑈 ) |
94 |
93
|
adantr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝑅1 ‘ 𝐴 ) ⊆ 𝑈 ) |
95 |
92 94
|
eqssd |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ ( 𝑅1 “ On ) ) → 𝑈 = ( 𝑅1 ‘ 𝐴 ) ) |