Description: If a Grothendieck universe contains a set's rank, it contains that set. (Contributed by Rohan Ridenour, 9-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grurankrcld.1 | ⊢ ( 𝜑 → 𝐺 ∈ Univ ) | |
| grurankrcld.2 | ⊢ ( 𝜑 → ( rank ‘ 𝐴 ) ∈ 𝐺 ) | ||
| grurankrcld.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | grurankrcld | ⊢ ( 𝜑 → 𝐴 ∈ 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grurankrcld.1 | ⊢ ( 𝜑 → 𝐺 ∈ Univ ) | |
| 2 | grurankrcld.2 | ⊢ ( 𝜑 → ( rank ‘ 𝐴 ) ∈ 𝐺 ) | |
| 3 | grurankrcld.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | 1 2 | grur1cld | ⊢ ( 𝜑 → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ 𝐺 ) |
| 5 | r1rankid | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 7 | gruss | ⊢ ( ( 𝐺 ∈ Univ ∧ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ 𝐺 ∧ 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) → 𝐴 ∈ 𝐺 ) | |
| 8 | 1 4 6 7 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ 𝐺 ) |