Metamath Proof Explorer


Theorem grurankrcld

Description: If a Grothendieck universe contains a set's rank, it contains that set. (Contributed by Rohan Ridenour, 9-Aug-2023)

Ref Expression
Hypotheses grurankrcld.1 ( 𝜑𝐺 ∈ Univ )
grurankrcld.2 ( 𝜑 → ( rank ‘ 𝐴 ) ∈ 𝐺 )
grurankrcld.3 ( 𝜑𝐴𝑉 )
Assertion grurankrcld ( 𝜑𝐴𝐺 )

Proof

Step Hyp Ref Expression
1 grurankrcld.1 ( 𝜑𝐺 ∈ Univ )
2 grurankrcld.2 ( 𝜑 → ( rank ‘ 𝐴 ) ∈ 𝐺 )
3 grurankrcld.3 ( 𝜑𝐴𝑉 )
4 1 2 grur1cld ( 𝜑 → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ 𝐺 )
5 r1rankid ( 𝐴𝑉𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )
6 3 5 syl ( 𝜑𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) )
7 gruss ( ( 𝐺 ∈ Univ ∧ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ∈ 𝐺𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) → 𝐴𝐺 )
8 1 4 6 7 syl3anc ( 𝜑𝐴𝐺 )