Metamath Proof Explorer


Theorem grurankrcld

Description: If a Grothendieck universe contains a set's rank, it contains that set. (Contributed by Rohan Ridenour, 9-Aug-2023)

Ref Expression
Hypotheses grurankrcld.1
|- ( ph -> G e. Univ )
grurankrcld.2
|- ( ph -> ( rank ` A ) e. G )
grurankrcld.3
|- ( ph -> A e. V )
Assertion grurankrcld
|- ( ph -> A e. G )

Proof

Step Hyp Ref Expression
1 grurankrcld.1
 |-  ( ph -> G e. Univ )
2 grurankrcld.2
 |-  ( ph -> ( rank ` A ) e. G )
3 grurankrcld.3
 |-  ( ph -> A e. V )
4 1 2 grur1cld
 |-  ( ph -> ( R1 ` ( rank ` A ) ) e. G )
5 r1rankid
 |-  ( A e. V -> A C_ ( R1 ` ( rank ` A ) ) )
6 3 5 syl
 |-  ( ph -> A C_ ( R1 ` ( rank ` A ) ) )
7 gruss
 |-  ( ( G e. Univ /\ ( R1 ` ( rank ` A ) ) e. G /\ A C_ ( R1 ` ( rank ` A ) ) ) -> A e. G )
8 1 4 6 7 syl3anc
 |-  ( ph -> A e. G )