Description: If a Grothendieck universe contains a set's rank, it contains that set. (Contributed by Rohan Ridenour, 9-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grurankrcld.1 | |- ( ph -> G e. Univ ) |
|
| grurankrcld.2 | |- ( ph -> ( rank ` A ) e. G ) |
||
| grurankrcld.3 | |- ( ph -> A e. V ) |
||
| Assertion | grurankrcld | |- ( ph -> A e. G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grurankrcld.1 | |- ( ph -> G e. Univ ) |
|
| 2 | grurankrcld.2 | |- ( ph -> ( rank ` A ) e. G ) |
|
| 3 | grurankrcld.3 | |- ( ph -> A e. V ) |
|
| 4 | 1 2 | grur1cld | |- ( ph -> ( R1 ` ( rank ` A ) ) e. G ) |
| 5 | r1rankid | |- ( A e. V -> A C_ ( R1 ` ( rank ` A ) ) ) |
|
| 6 | 3 5 | syl | |- ( ph -> A C_ ( R1 ` ( rank ` A ) ) ) |
| 7 | gruss | |- ( ( G e. Univ /\ ( R1 ` ( rank ` A ) ) e. G /\ A C_ ( R1 ` ( rank ` A ) ) ) -> A e. G ) |
|
| 8 | 1 4 6 7 | syl3anc | |- ( ph -> A e. G ) |