Metamath Proof Explorer


Theorem grurankrcld

Description: If a Grothendieck universe contains a set's rank, it contains that set. (Contributed by Rohan Ridenour, 9-Aug-2023)

Ref Expression
Hypotheses grurankrcld.1 φ G Univ
grurankrcld.2 φ rank A G
grurankrcld.3 φ A V
Assertion grurankrcld φ A G

Proof

Step Hyp Ref Expression
1 grurankrcld.1 φ G Univ
2 grurankrcld.2 φ rank A G
3 grurankrcld.3 φ A V
4 1 2 grur1cld φ R1 rank A G
5 r1rankid A V A R1 rank A
6 3 5 syl φ A R1 rank A
7 gruss G Univ R1 rank A G A R1 rank A A G
8 1 4 6 7 syl3anc φ A G