| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grur1cld.1 |
|
| 2 |
|
grur1cld.2 |
|
| 3 |
2
|
adantr |
|
| 4 |
|
eleq1 |
|
| 5 |
|
fveq2 |
|
| 6 |
5
|
eleq1d |
|
| 7 |
4 6
|
imbi12d |
|
| 8 |
|
eleq1 |
|
| 9 |
|
fveq2 |
|
| 10 |
9
|
eleq1d |
|
| 11 |
8 10
|
imbi12d |
|
| 12 |
|
eleq1 |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
eleq1d |
|
| 15 |
12 14
|
imbi12d |
|
| 16 |
|
eleq1 |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
eleq1d |
|
| 19 |
16 18
|
imbi12d |
|
| 20 |
|
r10 |
|
| 21 |
1 2
|
gru0eld |
|
| 22 |
20 21
|
eqeltrid |
|
| 23 |
22
|
adantr |
|
| 24 |
23
|
a1d |
|
| 25 |
|
simpl1 |
|
| 26 |
|
simpl2 |
|
| 27 |
1
|
adantr |
|
| 28 |
25 27
|
syl |
|
| 29 |
|
simpr |
|
| 30 |
|
sssucid |
|
| 31 |
30
|
a1i |
|
| 32 |
|
gruss |
|
| 33 |
28 29 31 32
|
syl3anc |
|
| 34 |
|
simpl3 |
|
| 35 |
33 34
|
mpd |
|
| 36 |
|
r1suc |
|
| 37 |
36
|
3ad2ant2 |
|
| 38 |
27
|
3ad2ant1 |
|
| 39 |
|
simp3 |
|
| 40 |
|
grupw |
|
| 41 |
38 39 40
|
syl2anc |
|
| 42 |
37 41
|
eqeltrd |
|
| 43 |
25 26 35 42
|
syl3anc |
|
| 44 |
43
|
ex |
|
| 45 |
|
simpr |
|
| 46 |
|
simpl2 |
|
| 47 |
|
r1lim |
|
| 48 |
45 46 47
|
syl2anc |
|
| 49 |
|
simpl1 |
|
| 50 |
49 27
|
syl |
|
| 51 |
|
simpl3 |
|
| 52 |
|
simpl1l |
|
| 53 |
|
simpl1 |
|
| 54 |
53 1
|
syl |
|
| 55 |
|
simpl3 |
|
| 56 |
|
simpl2 |
|
| 57 |
|
limord |
|
| 58 |
56 57
|
syl |
|
| 59 |
|
simpr |
|
| 60 |
|
ordelss |
|
| 61 |
58 59 60
|
syl2anc |
|
| 62 |
|
gruss |
|
| 63 |
54 55 61 62
|
syl3anc |
|
| 64 |
63
|
ralrimiva |
|
| 65 |
52 46 45 64
|
syl3anc |
|
| 66 |
|
ralim |
|
| 67 |
51 65 66
|
sylc |
|
| 68 |
|
gruiun |
|
| 69 |
50 45 67 68
|
syl3anc |
|
| 70 |
48 69
|
eqeltrd |
|
| 71 |
70
|
ex |
|
| 72 |
|
simpr |
|
| 73 |
7 11 15 19 24 44 71 72
|
tfindsd |
|
| 74 |
3 73
|
mpd |
|
| 75 |
|
r1fnon |
|
| 76 |
75
|
fndmi |
|
| 77 |
76
|
eleq2i |
|
| 78 |
|
ndmfv |
|
| 79 |
77 78
|
sylnbir |
|
| 80 |
79
|
adantl |
|
| 81 |
21
|
adantr |
|
| 82 |
80 81
|
eqeltrd |
|
| 83 |
74 82
|
pm2.61dan |
|