Step |
Hyp |
Ref |
Expression |
1 |
|
grur1cld.1 |
|
2 |
|
grur1cld.2 |
|
3 |
2
|
adantr |
|
4 |
|
eleq1 |
|
5 |
|
fveq2 |
|
6 |
5
|
eleq1d |
|
7 |
4 6
|
imbi12d |
|
8 |
|
eleq1 |
|
9 |
|
fveq2 |
|
10 |
9
|
eleq1d |
|
11 |
8 10
|
imbi12d |
|
12 |
|
eleq1 |
|
13 |
|
fveq2 |
|
14 |
13
|
eleq1d |
|
15 |
12 14
|
imbi12d |
|
16 |
|
eleq1 |
|
17 |
|
fveq2 |
|
18 |
17
|
eleq1d |
|
19 |
16 18
|
imbi12d |
|
20 |
|
r10 |
|
21 |
1 2
|
gru0eld |
|
22 |
20 21
|
eqeltrid |
|
23 |
22
|
adantr |
|
24 |
23
|
a1d |
|
25 |
|
simpl1 |
|
26 |
|
simpl2 |
|
27 |
1
|
adantr |
|
28 |
25 27
|
syl |
|
29 |
|
simpr |
|
30 |
|
sssucid |
|
31 |
30
|
a1i |
|
32 |
|
gruss |
|
33 |
28 29 31 32
|
syl3anc |
|
34 |
|
simpl3 |
|
35 |
33 34
|
mpd |
|
36 |
|
r1suc |
|
37 |
36
|
3ad2ant2 |
|
38 |
27
|
3ad2ant1 |
|
39 |
|
simp3 |
|
40 |
|
grupw |
|
41 |
38 39 40
|
syl2anc |
|
42 |
37 41
|
eqeltrd |
|
43 |
25 26 35 42
|
syl3anc |
|
44 |
43
|
ex |
|
45 |
|
simpr |
|
46 |
|
simpl2 |
|
47 |
|
r1lim |
|
48 |
45 46 47
|
syl2anc |
|
49 |
|
simpl1 |
|
50 |
49 27
|
syl |
|
51 |
|
simpl3 |
|
52 |
|
simpl1l |
|
53 |
|
simpl1 |
|
54 |
53 1
|
syl |
|
55 |
|
simpl3 |
|
56 |
|
simpl2 |
|
57 |
|
limord |
|
58 |
56 57
|
syl |
|
59 |
|
simpr |
|
60 |
|
ordelss |
|
61 |
58 59 60
|
syl2anc |
|
62 |
|
gruss |
|
63 |
54 55 61 62
|
syl3anc |
|
64 |
63
|
ralrimiva |
|
65 |
52 46 45 64
|
syl3anc |
|
66 |
|
ralim |
|
67 |
51 65 66
|
sylc |
|
68 |
|
gruiun |
|
69 |
50 45 67 68
|
syl3anc |
|
70 |
48 69
|
eqeltrd |
|
71 |
70
|
ex |
|
72 |
|
simpr |
|
73 |
7 11 15 19 24 44 71 72
|
tfindsd |
|
74 |
3 73
|
mpd |
|
75 |
|
r1fnon |
|
76 |
75
|
fndmi |
|
77 |
76
|
eleq2i |
|
78 |
|
ndmfv |
|
79 |
77 78
|
sylnbir |
|
80 |
79
|
adantl |
|
81 |
21
|
adantr |
|
82 |
80 81
|
eqeltrd |
|
83 |
74 82
|
pm2.61dan |
|