Metamath Proof Explorer


Theorem r1suc

Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by NM, 2-Sep-2003) (Revised by Mario Carneiro, 10-Sep-2013)

Ref Expression
Assertion r1suc AOnR1sucA=𝒫R1A

Proof

Step Hyp Ref Expression
1 r1sucg AdomR1R1sucA=𝒫R1A
2 r1fnon R1FnOn
3 2 fndmi domR1=On
4 3 eqcomi On=domR1
5 1 4 eleq2s AOnR1sucA=𝒫R1A