Metamath Proof Explorer


Theorem r1sucg

Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1sucg AdomR1R1sucA=𝒫R1A

Proof

Step Hyp Ref Expression
1 rdgsucg AdomrecxV𝒫xrecxV𝒫xsucA=xV𝒫xrecxV𝒫xA
2 df-r1 R1=recxV𝒫x
3 2 dmeqi domR1=domrecxV𝒫x
4 1 3 eleq2s AdomR1recxV𝒫xsucA=xV𝒫xrecxV𝒫xA
5 2 fveq1i R1sucA=recxV𝒫xsucA
6 fvex R1AV
7 pweq x=R1A𝒫x=𝒫R1A
8 eqid xV𝒫x=xV𝒫x
9 6 pwex 𝒫R1AV
10 7 8 9 fvmpt R1AVxV𝒫xR1A=𝒫R1A
11 6 10 ax-mp xV𝒫xR1A=𝒫R1A
12 2 fveq1i R1A=recxV𝒫xA
13 12 fveq2i xV𝒫xR1A=xV𝒫xrecxV𝒫xA
14 11 13 eqtr3i 𝒫R1A=xV𝒫xrecxV𝒫xA
15 4 5 14 3eqtr4g AdomR1R1sucA=𝒫R1A