Step |
Hyp |
Ref |
Expression |
1 |
|
rdgsucg |
|- ( A e. dom rec ( ( x e. _V |-> ~P x ) , (/) ) -> ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` suc A ) = ( ( x e. _V |-> ~P x ) ` ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` A ) ) ) |
2 |
|
df-r1 |
|- R1 = rec ( ( x e. _V |-> ~P x ) , (/) ) |
3 |
2
|
dmeqi |
|- dom R1 = dom rec ( ( x e. _V |-> ~P x ) , (/) ) |
4 |
1 3
|
eleq2s |
|- ( A e. dom R1 -> ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` suc A ) = ( ( x e. _V |-> ~P x ) ` ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` A ) ) ) |
5 |
2
|
fveq1i |
|- ( R1 ` suc A ) = ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` suc A ) |
6 |
|
fvex |
|- ( R1 ` A ) e. _V |
7 |
|
pweq |
|- ( x = ( R1 ` A ) -> ~P x = ~P ( R1 ` A ) ) |
8 |
|
eqid |
|- ( x e. _V |-> ~P x ) = ( x e. _V |-> ~P x ) |
9 |
6
|
pwex |
|- ~P ( R1 ` A ) e. _V |
10 |
7 8 9
|
fvmpt |
|- ( ( R1 ` A ) e. _V -> ( ( x e. _V |-> ~P x ) ` ( R1 ` A ) ) = ~P ( R1 ` A ) ) |
11 |
6 10
|
ax-mp |
|- ( ( x e. _V |-> ~P x ) ` ( R1 ` A ) ) = ~P ( R1 ` A ) |
12 |
2
|
fveq1i |
|- ( R1 ` A ) = ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` A ) |
13 |
12
|
fveq2i |
|- ( ( x e. _V |-> ~P x ) ` ( R1 ` A ) ) = ( ( x e. _V |-> ~P x ) ` ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` A ) ) |
14 |
11 13
|
eqtr3i |
|- ~P ( R1 ` A ) = ( ( x e. _V |-> ~P x ) ` ( rec ( ( x e. _V |-> ~P x ) , (/) ) ` A ) ) |
15 |
4 5 14
|
3eqtr4g |
|- ( A e. dom R1 -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |