Metamath Proof Explorer


Theorem grurankcld

Description: Grothendieck universes are closed under the rank function. (Contributed by Rohan Ridenour, 9-Aug-2023)

Ref Expression
Hypotheses grurankcld.1
|- ( ph -> G e. Univ )
grurankcld.2
|- ( ph -> A e. G )
Assertion grurankcld
|- ( ph -> ( rank ` A ) e. G )

Proof

Step Hyp Ref Expression
1 grurankcld.1
 |-  ( ph -> G e. Univ )
2 grurankcld.2
 |-  ( ph -> A e. G )
3 1 elexd
 |-  ( ph -> G e. _V )
4 unir1
 |-  U. ( R1 " On ) = _V
5 3 4 eleqtrrdi
 |-  ( ph -> G e. U. ( R1 " On ) )
6 eqid
 |-  ( G i^i On ) = ( G i^i On )
7 6 grur1
 |-  ( ( G e. Univ /\ G e. U. ( R1 " On ) ) -> G = ( R1 ` ( G i^i On ) ) )
8 1 5 7 syl2anc
 |-  ( ph -> G = ( R1 ` ( G i^i On ) ) )
9 2 8 eleqtrd
 |-  ( ph -> A e. ( R1 ` ( G i^i On ) ) )
10 9 r1rankcld
 |-  ( ph -> ( rank ` A ) e. ( R1 ` ( G i^i On ) ) )
11 10 8 eleqtrrd
 |-  ( ph -> ( rank ` A ) e. G )