| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grurankcld.1 |
|- ( ph -> G e. Univ ) |
| 2 |
|
grurankcld.2 |
|- ( ph -> A e. G ) |
| 3 |
1
|
elexd |
|- ( ph -> G e. _V ) |
| 4 |
|
unir1 |
|- U. ( R1 " On ) = _V |
| 5 |
3 4
|
eleqtrrdi |
|- ( ph -> G e. U. ( R1 " On ) ) |
| 6 |
|
eqid |
|- ( G i^i On ) = ( G i^i On ) |
| 7 |
6
|
grur1 |
|- ( ( G e. Univ /\ G e. U. ( R1 " On ) ) -> G = ( R1 ` ( G i^i On ) ) ) |
| 8 |
1 5 7
|
syl2anc |
|- ( ph -> G = ( R1 ` ( G i^i On ) ) ) |
| 9 |
2 8
|
eleqtrd |
|- ( ph -> A e. ( R1 ` ( G i^i On ) ) ) |
| 10 |
9
|
r1rankcld |
|- ( ph -> ( rank ` A ) e. ( R1 ` ( G i^i On ) ) ) |
| 11 |
10 8
|
eleqtrrd |
|- ( ph -> ( rank ` A ) e. G ) |