| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
| 2 |
1
|
simpri |
|- Lim dom R1 |
| 3 |
|
limord |
|- ( Lim dom R1 -> Ord dom R1 ) |
| 4 |
|
ordtr1 |
|- ( Ord dom R1 -> ( ( x e. A /\ A e. dom R1 ) -> x e. dom R1 ) ) |
| 5 |
2 3 4
|
mp2b |
|- ( ( x e. A /\ A e. dom R1 ) -> x e. dom R1 ) |
| 6 |
5
|
ancoms |
|- ( ( A e. dom R1 /\ x e. A ) -> x e. dom R1 ) |
| 7 |
|
rankonidlem |
|- ( x e. dom R1 -> ( x e. U. ( R1 " On ) /\ ( rank ` x ) = x ) ) |
| 8 |
6 7
|
syl |
|- ( ( A e. dom R1 /\ x e. A ) -> ( x e. U. ( R1 " On ) /\ ( rank ` x ) = x ) ) |
| 9 |
8
|
simprd |
|- ( ( A e. dom R1 /\ x e. A ) -> ( rank ` x ) = x ) |
| 10 |
|
simpr |
|- ( ( A e. dom R1 /\ x e. A ) -> x e. A ) |
| 11 |
9 10
|
eqeltrd |
|- ( ( A e. dom R1 /\ x e. A ) -> ( rank ` x ) e. A ) |
| 12 |
8
|
simpld |
|- ( ( A e. dom R1 /\ x e. A ) -> x e. U. ( R1 " On ) ) |
| 13 |
|
simpl |
|- ( ( A e. dom R1 /\ x e. A ) -> A e. dom R1 ) |
| 14 |
|
rankr1ag |
|- ( ( x e. U. ( R1 " On ) /\ A e. dom R1 ) -> ( x e. ( R1 ` A ) <-> ( rank ` x ) e. A ) ) |
| 15 |
12 13 14
|
syl2anc |
|- ( ( A e. dom R1 /\ x e. A ) -> ( x e. ( R1 ` A ) <-> ( rank ` x ) e. A ) ) |
| 16 |
11 15
|
mpbird |
|- ( ( A e. dom R1 /\ x e. A ) -> x e. ( R1 ` A ) ) |
| 17 |
16
|
ex |
|- ( A e. dom R1 -> ( x e. A -> x e. ( R1 ` A ) ) ) |
| 18 |
17
|
ssrdv |
|- ( A e. dom R1 -> A C_ ( R1 ` A ) ) |