| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankr1ai |
|- ( A e. ( R1 ` B ) -> ( rank ` A ) e. B ) |
| 2 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
| 3 |
2
|
simpri |
|- Lim dom R1 |
| 4 |
|
limord |
|- ( Lim dom R1 -> Ord dom R1 ) |
| 5 |
3 4
|
ax-mp |
|- Ord dom R1 |
| 6 |
|
ordelord |
|- ( ( Ord dom R1 /\ B e. dom R1 ) -> Ord B ) |
| 7 |
5 6
|
mpan |
|- ( B e. dom R1 -> Ord B ) |
| 8 |
7
|
adantl |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> Ord B ) |
| 9 |
|
ordsucss |
|- ( Ord B -> ( ( rank ` A ) e. B -> suc ( rank ` A ) C_ B ) ) |
| 10 |
8 9
|
syl |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( rank ` A ) e. B -> suc ( rank ` A ) C_ B ) ) |
| 11 |
|
rankidb |
|- ( A e. U. ( R1 " On ) -> A e. ( R1 ` suc ( rank ` A ) ) ) |
| 12 |
|
elfvdm |
|- ( A e. ( R1 ` suc ( rank ` A ) ) -> suc ( rank ` A ) e. dom R1 ) |
| 13 |
11 12
|
syl |
|- ( A e. U. ( R1 " On ) -> suc ( rank ` A ) e. dom R1 ) |
| 14 |
|
r1ord3g |
|- ( ( suc ( rank ` A ) e. dom R1 /\ B e. dom R1 ) -> ( suc ( rank ` A ) C_ B -> ( R1 ` suc ( rank ` A ) ) C_ ( R1 ` B ) ) ) |
| 15 |
13 14
|
sylan |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( suc ( rank ` A ) C_ B -> ( R1 ` suc ( rank ` A ) ) C_ ( R1 ` B ) ) ) |
| 16 |
11
|
adantr |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> A e. ( R1 ` suc ( rank ` A ) ) ) |
| 17 |
|
ssel |
|- ( ( R1 ` suc ( rank ` A ) ) C_ ( R1 ` B ) -> ( A e. ( R1 ` suc ( rank ` A ) ) -> A e. ( R1 ` B ) ) ) |
| 18 |
16 17
|
syl5com |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( R1 ` suc ( rank ` A ) ) C_ ( R1 ` B ) -> A e. ( R1 ` B ) ) ) |
| 19 |
10 15 18
|
3syld |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( rank ` A ) e. B -> A e. ( R1 ` B ) ) ) |
| 20 |
1 19
|
impbid2 |
|- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) |