Metamath Proof Explorer


Theorem rankr1g

Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by NM, 6-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankr1g
|- ( A e. V -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. V -> A e. _V )
2 unir1
 |-  U. ( R1 " On ) = _V
3 1 2 eleqtrrdi
 |-  ( A e. V -> A e. U. ( R1 " On ) )
4 rankr1c
 |-  ( A e. U. ( R1 " On ) -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) )
5 3 4 syl
 |-  ( A e. V -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) )