Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by NM, 6-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rankr1g | |- ( A e. V -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |- ( A e. V -> A e. _V ) |
|
2 | unir1 | |- U. ( R1 " On ) = _V |
|
3 | 1 2 | eleqtrrdi | |- ( A e. V -> A e. U. ( R1 " On ) ) |
4 | rankr1c | |- ( A e. U. ( R1 " On ) -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) |
|
5 | 3 4 | syl | |- ( A e. V -> ( B = ( rank ` A ) <-> ( -. A e. ( R1 ` B ) /\ A e. ( R1 ` suc B ) ) ) ) |