Metamath Proof Explorer


Theorem rankr1g

Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by NM, 6-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankr1g ( 𝐴𝑉 → ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴𝑉𝐴 ∈ V )
2 unir1 ( 𝑅1 “ On ) = V
3 1 2 eleqtrrdi ( 𝐴𝑉𝐴 ( 𝑅1 “ On ) )
4 rankr1c ( 𝐴 ( 𝑅1 “ On ) → ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) )
5 3 4 syl ( 𝐴𝑉 → ( 𝐵 = ( rank ‘ 𝐴 ) ↔ ( ¬ 𝐴 ∈ ( 𝑅1𝐵 ) ∧ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) )