Metamath Proof Explorer


Theorem onssr1

Description: Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion onssr1 AdomR1AR1A

Proof

Step Hyp Ref Expression
1 r1funlim FunR1LimdomR1
2 1 simpri LimdomR1
3 limord LimdomR1OrddomR1
4 ordtr1 OrddomR1xAAdomR1xdomR1
5 2 3 4 mp2b xAAdomR1xdomR1
6 5 ancoms AdomR1xAxdomR1
7 rankonidlem xdomR1xR1Onrankx=x
8 6 7 syl AdomR1xAxR1Onrankx=x
9 8 simprd AdomR1xArankx=x
10 simpr AdomR1xAxA
11 9 10 eqeltrd AdomR1xArankxA
12 8 simpld AdomR1xAxR1On
13 simpl AdomR1xAAdomR1
14 rankr1ag xR1OnAdomR1xR1ArankxA
15 12 13 14 syl2anc AdomR1xAxR1ArankxA
16 11 15 mpbird AdomR1xAxR1A
17 16 ex AdomR1xAxR1A
18 17 ssrdv AdomR1AR1A