| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1funlim |
|
| 2 |
1
|
simpri |
|
| 3 |
|
limord |
|
| 4 |
2 3
|
ax-mp |
|
| 5 |
|
ordelon |
|
| 6 |
4 5
|
mpan |
|
| 7 |
|
eleq1 |
|
| 8 |
|
eleq1 |
|
| 9 |
|
fveq2 |
|
| 10 |
|
id |
|
| 11 |
9 10
|
eqeq12d |
|
| 12 |
8 11
|
anbi12d |
|
| 13 |
7 12
|
imbi12d |
|
| 14 |
|
eleq1 |
|
| 15 |
|
eleq1 |
|
| 16 |
|
fveq2 |
|
| 17 |
|
id |
|
| 18 |
16 17
|
eqeq12d |
|
| 19 |
15 18
|
anbi12d |
|
| 20 |
14 19
|
imbi12d |
|
| 21 |
|
ordtr1 |
|
| 22 |
4 21
|
ax-mp |
|
| 23 |
22
|
ancoms |
|
| 24 |
|
pm5.5 |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
ralbidva |
|
| 27 |
|
simplr |
|
| 28 |
|
ordelon |
|
| 29 |
4 28
|
mpan |
|
| 30 |
29
|
ad2antrr |
|
| 31 |
|
eloni |
|
| 32 |
30 31
|
syl |
|
| 33 |
|
ordelsuc |
|
| 34 |
27 32 33
|
syl2anc |
|
| 35 |
27 34
|
mpbid |
|
| 36 |
23
|
adantr |
|
| 37 |
|
limsuc |
|
| 38 |
2 37
|
ax-mp |
|
| 39 |
36 38
|
sylib |
|
| 40 |
|
simpll |
|
| 41 |
|
r1ord3g |
|
| 42 |
39 40 41
|
syl2anc |
|
| 43 |
35 42
|
mpd |
|
| 44 |
|
rankidb |
|
| 45 |
44
|
ad2antrl |
|
| 46 |
|
suceq |
|
| 47 |
46
|
ad2antll |
|
| 48 |
47
|
fveq2d |
|
| 49 |
45 48
|
eleqtrd |
|
| 50 |
43 49
|
sseldd |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
ralimdva |
|
| 53 |
52
|
imp |
|
| 54 |
|
dfss3 |
|
| 55 |
53 54
|
sylibr |
|
| 56 |
|
vex |
|
| 57 |
56
|
elpw |
|
| 58 |
55 57
|
sylibr |
|
| 59 |
|
r1sucg |
|
| 60 |
59
|
adantr |
|
| 61 |
58 60
|
eleqtrrd |
|
| 62 |
|
r1elwf |
|
| 63 |
61 62
|
syl |
|
| 64 |
|
rankval3b |
|
| 65 |
63 64
|
syl |
|
| 66 |
|
eleq1 |
|
| 67 |
66
|
adantl |
|
| 68 |
67
|
ralimi |
|
| 69 |
|
ralbi |
|
| 70 |
68 69
|
syl |
|
| 71 |
|
dfss3 |
|
| 72 |
70 71
|
bitr4di |
|
| 73 |
72
|
rabbidv |
|
| 74 |
73
|
inteqd |
|
| 75 |
74
|
adantl |
|
| 76 |
29
|
adantr |
|
| 77 |
|
intmin |
|
| 78 |
76 77
|
syl |
|
| 79 |
65 75 78
|
3eqtrd |
|
| 80 |
63 79
|
jca |
|
| 81 |
80
|
ex |
|
| 82 |
26 81
|
sylbid |
|
| 83 |
82
|
com12 |
|
| 84 |
83
|
a1i |
|
| 85 |
13 20 84
|
tfis3 |
|
| 86 |
6 85
|
mpcom |
|