| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
| 2 |
1
|
simpri |
⊢ Lim dom 𝑅1 |
| 3 |
|
limord |
⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) |
| 4 |
2 3
|
ax-mp |
⊢ Ord dom 𝑅1 |
| 5 |
|
ordelon |
⊢ ( ( Ord dom 𝑅1 ∧ 𝐴 ∈ dom 𝑅1 ) → 𝐴 ∈ On ) |
| 6 |
4 5
|
mpan |
⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ∈ On ) |
| 7 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ dom 𝑅1 ↔ 𝑦 ∈ dom 𝑅1 ) ) |
| 8 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝑦 ) ) |
| 10 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( rank ‘ 𝑥 ) = 𝑥 ↔ ( rank ‘ 𝑦 ) = 𝑦 ) ) |
| 12 |
8 11
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ) |
| 13 |
7 12
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ dom 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) ↔ ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ) ) |
| 14 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ dom 𝑅1 ↔ 𝐴 ∈ dom 𝑅1 ) ) |
| 15 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) ) |
| 17 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
| 18 |
16 17
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( rank ‘ 𝑥 ) = 𝑥 ↔ ( rank ‘ 𝐴 ) = 𝐴 ) ) |
| 19 |
15 18
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = 𝐴 ) ) ) |
| 20 |
14 19
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ dom 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) ↔ ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = 𝐴 ) ) ) ) |
| 21 |
|
ordtr1 |
⊢ ( Ord dom 𝑅1 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) → 𝑦 ∈ dom 𝑅1 ) ) |
| 22 |
4 21
|
ax-mp |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) → 𝑦 ∈ dom 𝑅1 ) |
| 23 |
22
|
ancoms |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ dom 𝑅1 ) |
| 24 |
|
pm5.5 |
⊢ ( 𝑦 ∈ dom 𝑅1 → ( ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ↔ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ↔ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ) |
| 26 |
25
|
ralbidva |
⊢ ( 𝑥 ∈ dom 𝑅1 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ) |
| 27 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑦 ∈ 𝑥 ) |
| 28 |
|
ordelon |
⊢ ( ( Ord dom 𝑅1 ∧ 𝑥 ∈ dom 𝑅1 ) → 𝑥 ∈ On ) |
| 29 |
4 28
|
mpan |
⊢ ( 𝑥 ∈ dom 𝑅1 → 𝑥 ∈ On ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ On ) |
| 31 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
| 32 |
30 31
|
syl |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → Ord 𝑥 ) |
| 33 |
|
ordelsuc |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ Ord 𝑥 ) → ( 𝑦 ∈ 𝑥 ↔ suc 𝑦 ⊆ 𝑥 ) ) |
| 34 |
27 32 33
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑦 ∈ 𝑥 ↔ suc 𝑦 ⊆ 𝑥 ) ) |
| 35 |
27 34
|
mpbid |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → suc 𝑦 ⊆ 𝑥 ) |
| 36 |
23
|
adantr |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑦 ∈ dom 𝑅1 ) |
| 37 |
|
limsuc |
⊢ ( Lim dom 𝑅1 → ( 𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1 ) ) |
| 38 |
2 37
|
ax-mp |
⊢ ( 𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1 ) |
| 39 |
36 38
|
sylib |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → suc 𝑦 ∈ dom 𝑅1 ) |
| 40 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ dom 𝑅1 ) |
| 41 |
|
r1ord3g |
⊢ ( ( suc 𝑦 ∈ dom 𝑅1 ∧ 𝑥 ∈ dom 𝑅1 ) → ( suc 𝑦 ⊆ 𝑥 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 42 |
39 40 41
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( suc 𝑦 ⊆ 𝑥 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 43 |
35 42
|
mpd |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 44 |
|
rankidb |
⊢ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) → 𝑦 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) |
| 45 |
44
|
ad2antrl |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑦 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) |
| 46 |
|
suceq |
⊢ ( ( rank ‘ 𝑦 ) = 𝑦 → suc ( rank ‘ 𝑦 ) = suc 𝑦 ) |
| 47 |
46
|
ad2antll |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → suc ( rank ‘ 𝑦 ) = suc 𝑦 ) |
| 48 |
47
|
fveq2d |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) = ( 𝑅1 ‘ suc 𝑦 ) ) |
| 49 |
45 48
|
eleqtrd |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑦 ∈ ( 𝑅1 ‘ suc 𝑦 ) ) |
| 50 |
43 49
|
sseldd |
⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 51 |
50
|
ex |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 52 |
51
|
ralimdva |
⊢ ( 𝑥 ∈ dom 𝑅1 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 53 |
52
|
imp |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 54 |
|
dfss3 |
⊢ ( 𝑥 ⊆ ( 𝑅1 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 55 |
53 54
|
sylibr |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 56 |
|
vex |
⊢ 𝑥 ∈ V |
| 57 |
56
|
elpw |
⊢ ( 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ↔ 𝑥 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 58 |
55 57
|
sylibr |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 59 |
|
r1sucg |
⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 61 |
58 60
|
eleqtrrd |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 62 |
|
r1elwf |
⊢ ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝑥 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 63 |
61 62
|
syl |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 64 |
|
rankval3b |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝑥 ) = ∩ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 } ) |
| 65 |
63 64
|
syl |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( rank ‘ 𝑥 ) = ∩ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 } ) |
| 66 |
|
eleq1 |
⊢ ( ( rank ‘ 𝑦 ) = 𝑦 → ( ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ( ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 68 |
67
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ∀ 𝑦 ∈ 𝑥 ( ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 69 |
|
ralbi |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) → ( ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑧 ) ) |
| 70 |
68 69
|
syl |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ( ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑧 ) ) |
| 71 |
|
dfss3 |
⊢ ( 𝑥 ⊆ 𝑧 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑧 ) |
| 72 |
70 71
|
bitr4di |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ( ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ 𝑥 ⊆ 𝑧 ) ) |
| 73 |
72
|
rabbidv |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 } = { 𝑧 ∈ On ∣ 𝑥 ⊆ 𝑧 } ) |
| 74 |
73
|
inteqd |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ∩ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 } = ∩ { 𝑧 ∈ On ∣ 𝑥 ⊆ 𝑧 } ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ∩ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 } = ∩ { 𝑧 ∈ On ∣ 𝑥 ⊆ 𝑧 } ) |
| 76 |
29
|
adantr |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ On ) |
| 77 |
|
intmin |
⊢ ( 𝑥 ∈ On → ∩ { 𝑧 ∈ On ∣ 𝑥 ⊆ 𝑧 } = 𝑥 ) |
| 78 |
76 77
|
syl |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ∩ { 𝑧 ∈ On ∣ 𝑥 ⊆ 𝑧 } = 𝑥 ) |
| 79 |
65 75 78
|
3eqtrd |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( rank ‘ 𝑥 ) = 𝑥 ) |
| 80 |
63 79
|
jca |
⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) |
| 81 |
80
|
ex |
⊢ ( 𝑥 ∈ dom 𝑅1 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) ) |
| 82 |
26 81
|
sylbid |
⊢ ( 𝑥 ∈ dom 𝑅1 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) ) |
| 83 |
82
|
com12 |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 ∈ dom 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) ) |
| 84 |
83
|
a1i |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 ∈ dom 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) ) ) |
| 85 |
13 20 84
|
tfis3 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = 𝐴 ) ) ) |
| 86 |
6 85
|
mpcom |
⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = 𝐴 ) ) |