Step |
Hyp |
Ref |
Expression |
1 |
|
rankwflemb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
2 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑅1 |
3 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } |
4 |
3
|
nfint |
⊢ Ⅎ 𝑥 ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } |
5 |
4
|
nfsuc |
⊢ Ⅎ 𝑥 suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } |
6 |
2 5
|
nffv |
⊢ Ⅎ 𝑥 ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
7 |
6
|
nfel2 |
⊢ Ⅎ 𝑥 𝐴 ∈ ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
8 |
|
suceq |
⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } → suc 𝑥 = suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
9 |
8
|
fveq2d |
⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } → ( 𝑅1 ‘ suc 𝑥 ) = ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) ) |
10 |
9
|
eleq2d |
⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) ) ) |
11 |
7 10
|
onminsb |
⊢ ( ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) → 𝐴 ∈ ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) ) |
12 |
1 11
|
sylbi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) ) |
13 |
|
rankvalb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
14 |
|
suceq |
⊢ ( ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } → suc ( rank ‘ 𝐴 ) = suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
15 |
13 14
|
syl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → suc ( rank ‘ 𝐴 ) = suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) |
16 |
15
|
fveq2d |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = ( 𝑅1 ‘ suc ∩ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ) ) |
17 |
12 16
|
eleqtrrd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |