Step |
Hyp |
Ref |
Expression |
1 |
|
rankidb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
2 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) |
4 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
5 |
4
|
simpri |
⊢ Lim dom 𝑅1 |
6 |
|
limsuc |
⊢ ( Lim dom 𝑅1 → ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ↔ suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) ) |
7 |
5 6
|
ax-mp |
⊢ ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ↔ suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) |
8 |
3 7
|
sylibr |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) |
9 |
|
rankvaln |
⊢ ( ¬ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∅ ) |
10 |
|
limomss |
⊢ ( Lim dom 𝑅1 → ω ⊆ dom 𝑅1 ) |
11 |
5 10
|
ax-mp |
⊢ ω ⊆ dom 𝑅1 |
12 |
|
peano1 |
⊢ ∅ ∈ ω |
13 |
11 12
|
sselii |
⊢ ∅ ∈ dom 𝑅1 |
14 |
9 13
|
eqeltrdi |
⊢ ( ¬ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) |
15 |
8 14
|
pm2.61i |
⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 |