Metamath Proof Explorer
		
		
		
		Description:  Bound-variable hypothesis builder for intersection.  (Contributed by NM, 2-Feb-1997)  (Proof shortened by Andrew Salmon, 12-Aug-2011)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypothesis | 
						nfint.1 | 
						⊢ Ⅎ 𝑥 𝐴  | 
					
				
					 | 
					Assertion | 
					nfint | 
					⊢  Ⅎ 𝑥 ∩  𝐴  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nfint.1 | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							dfint2 | 
							⊢ ∩  𝐴  =  { 𝑦  ∣  ∀ 𝑧  ∈  𝐴 𝑦  ∈  𝑧 }  | 
						
						
							| 3 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑦  ∈  𝑧  | 
						
						
							| 4 | 
							
								1 3
							 | 
							nfralw | 
							⊢ Ⅎ 𝑥 ∀ 𝑧  ∈  𝐴 𝑦  ∈  𝑧  | 
						
						
							| 5 | 
							
								4
							 | 
							nfab | 
							⊢ Ⅎ 𝑥 { 𝑦  ∣  ∀ 𝑧  ∈  𝐴 𝑦  ∈  𝑧 }  | 
						
						
							| 6 | 
							
								2 5
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑥 ∩  𝐴  |