Metamath Proof Explorer


Theorem rankvalb

Description: Value of the rank function. Definition 9.14 of TakeutiZaring p. 79 (proved as a theorem from our definition). This variant of rankval does not use Regularity, and so requires the assumption that A is in the range of R1 . (Contributed by NM, 11-Oct-2003) (Revised by Mario Carneiro, 10-Sep-2013)

Ref Expression
Assertion rankvalb ( 𝐴 ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } )

Proof

Step Hyp Ref Expression
1 df-rank rank = ( 𝑦 ∈ V ↦ { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } )
2 eleq1 ( 𝑦 = 𝐴 → ( 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) )
3 2 rabbidv ( 𝑦 = 𝐴 → { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } = { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } )
4 3 inteqd ( 𝑦 = 𝐴 { 𝑥 ∈ On ∣ 𝑦 ∈ ( 𝑅1 ‘ suc 𝑥 ) } = { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } )
5 elex ( 𝐴 ( 𝑅1 “ On ) → 𝐴 ∈ V )
6 rankwflemb ( 𝐴 ( 𝑅1 “ On ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) )
7 intexrab ( ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) ↔ { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ∈ V )
8 6 7 sylbb ( 𝐴 ( 𝑅1 “ On ) → { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } ∈ V )
9 1 4 5 8 fvmptd3 ( 𝐴 ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = { 𝑥 ∈ On ∣ 𝐴 ∈ ( 𝑅1 ‘ suc 𝑥 ) } )