Metamath Proof Explorer


Theorem r1ord3g

Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of BellMachover p. 478. (Contributed by NM, 22-Sep-2003)

Ref Expression
Assertion r1ord3g ( ( 𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1 ) → ( 𝐴𝐵 → ( 𝑅1𝐴 ) ⊆ ( 𝑅1𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 r1funlim ( Fun 𝑅1 ∧ Lim dom 𝑅1 )
2 1 simpri Lim dom 𝑅1
3 limord ( Lim dom 𝑅1 → Ord dom 𝑅1 )
4 ordsson ( Ord dom 𝑅1 → dom 𝑅1 ⊆ On )
5 2 3 4 mp2b dom 𝑅1 ⊆ On
6 5 sseli ( 𝐴 ∈ dom 𝑅1𝐴 ∈ On )
7 5 sseli ( 𝐵 ∈ dom 𝑅1𝐵 ∈ On )
8 onsseleq ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴 = 𝐵 ) ) )
9 6 7 8 syl2an ( ( 𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1 ) → ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴 = 𝐵 ) ) )
10 r1tr Tr ( 𝑅1𝐵 )
11 r1ordg ( 𝐵 ∈ dom 𝑅1 → ( 𝐴𝐵 → ( 𝑅1𝐴 ) ∈ ( 𝑅1𝐵 ) ) )
12 11 adantl ( ( 𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1 ) → ( 𝐴𝐵 → ( 𝑅1𝐴 ) ∈ ( 𝑅1𝐵 ) ) )
13 trss ( Tr ( 𝑅1𝐵 ) → ( ( 𝑅1𝐴 ) ∈ ( 𝑅1𝐵 ) → ( 𝑅1𝐴 ) ⊆ ( 𝑅1𝐵 ) ) )
14 10 12 13 mpsylsyld ( ( 𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1 ) → ( 𝐴𝐵 → ( 𝑅1𝐴 ) ⊆ ( 𝑅1𝐵 ) ) )
15 fveq2 ( 𝐴 = 𝐵 → ( 𝑅1𝐴 ) = ( 𝑅1𝐵 ) )
16 eqimss ( ( 𝑅1𝐴 ) = ( 𝑅1𝐵 ) → ( 𝑅1𝐴 ) ⊆ ( 𝑅1𝐵 ) )
17 15 16 syl ( 𝐴 = 𝐵 → ( 𝑅1𝐴 ) ⊆ ( 𝑅1𝐵 ) )
18 17 a1i ( ( 𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1 ) → ( 𝐴 = 𝐵 → ( 𝑅1𝐴 ) ⊆ ( 𝑅1𝐵 ) ) )
19 14 18 jaod ( ( 𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1 ) → ( ( 𝐴𝐵𝐴 = 𝐵 ) → ( 𝑅1𝐴 ) ⊆ ( 𝑅1𝐵 ) ) )
20 9 19 sylbid ( ( 𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1 ) → ( 𝐴𝐵 → ( 𝑅1𝐴 ) ⊆ ( 𝑅1𝐵 ) ) )