Metamath Proof Explorer


Theorem rankval3b

Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of TakeutiZaring p. 79. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankval3b AR1OnrankA=xOn|yArankyx

Proof

Step Hyp Ref Expression
1 rankon rankAOn
2 simprl AR1OnxOnyArankyxxOn
3 ontri1 rankAOnxOnrankAx¬xrankA
4 1 2 3 sylancr AR1OnxOnyArankyxrankAx¬xrankA
5 4 con2bid AR1OnxOnyArankyxxrankA¬rankAx
6 r1elssi AR1OnAR1On
7 6 adantr AR1OnxrankAAR1On
8 7 sselda AR1OnxrankAyAyR1On
9 rankdmr1 rankAdomR1
10 r1funlim FunR1LimdomR1
11 10 simpri LimdomR1
12 limord LimdomR1OrddomR1
13 ordtr1 OrddomR1xrankArankAdomR1xdomR1
14 11 12 13 mp2b xrankArankAdomR1xdomR1
15 9 14 mpan2 xrankAxdomR1
16 15 ad2antlr AR1OnxrankAyAxdomR1
17 rankr1ag yR1OnxdomR1yR1xrankyx
18 8 16 17 syl2anc AR1OnxrankAyAyR1xrankyx
19 18 ralbidva AR1OnxrankAyAyR1xyArankyx
20 19 biimpar AR1OnxrankAyArankyxyAyR1x
21 20 an32s AR1OnyArankyxxrankAyAyR1x
22 dfss3 AR1xyAyR1x
23 21 22 sylibr AR1OnyArankyxxrankAAR1x
24 simpll AR1OnyArankyxxrankAAR1On
25 15 adantl AR1OnyArankyxxrankAxdomR1
26 rankr1bg AR1OnxdomR1AR1xrankAx
27 24 25 26 syl2anc AR1OnyArankyxxrankAAR1xrankAx
28 23 27 mpbid AR1OnyArankyxxrankArankAx
29 28 ex AR1OnyArankyxxrankArankAx
30 29 adantrl AR1OnxOnyArankyxxrankArankAx
31 5 30 sylbird AR1OnxOnyArankyx¬rankAxrankAx
32 31 pm2.18d AR1OnxOnyArankyxrankAx
33 32 ex AR1OnxOnyArankyxrankAx
34 33 alrimiv AR1OnxxOnyArankyxrankAx
35 ssintab rankAx|xOnyArankyxxxOnyArankyxrankAx
36 34 35 sylibr AR1OnrankAx|xOnyArankyx
37 df-rab xOn|yArankyx=x|xOnyArankyx
38 37 inteqi xOn|yArankyx=x|xOnyArankyx
39 36 38 sseqtrrdi AR1OnrankAxOn|yArankyx
40 rankelb AR1OnyArankyrankA
41 40 ralrimiv AR1OnyArankyrankA
42 eleq2 x=rankArankyxrankyrankA
43 42 ralbidv x=rankAyArankyxyArankyrankA
44 43 onintss rankAOnyArankyrankAxOn|yArankyxrankA
45 1 41 44 mpsyl AR1OnxOn|yArankyxrankA
46 39 45 eqssd AR1OnrankA=xOn|yArankyx