Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of TakeutiZaring p. 79. (Contributed by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rankval3b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankon | |
|
2 | simprl | |
|
3 | ontri1 | |
|
4 | 1 2 3 | sylancr | |
5 | 4 | con2bid | |
6 | r1elssi | |
|
7 | 6 | adantr | |
8 | 7 | sselda | |
9 | rankdmr1 | |
|
10 | r1funlim | |
|
11 | 10 | simpri | |
12 | limord | |
|
13 | ordtr1 | |
|
14 | 11 12 13 | mp2b | |
15 | 9 14 | mpan2 | |
16 | 15 | ad2antlr | |
17 | rankr1ag | |
|
18 | 8 16 17 | syl2anc | |
19 | 18 | ralbidva | |
20 | 19 | biimpar | |
21 | 20 | an32s | |
22 | dfss3 | |
|
23 | 21 22 | sylibr | |
24 | simpll | |
|
25 | 15 | adantl | |
26 | rankr1bg | |
|
27 | 24 25 26 | syl2anc | |
28 | 23 27 | mpbid | |
29 | 28 | ex | |
30 | 29 | adantrl | |
31 | 5 30 | sylbird | |
32 | 31 | pm2.18d | |
33 | 32 | ex | |
34 | 33 | alrimiv | |
35 | ssintab | |
|
36 | 34 35 | sylibr | |
37 | df-rab | |
|
38 | 37 | inteqi | |
39 | 36 38 | sseqtrrdi | |
40 | rankelb | |
|
41 | 40 | ralrimiv | |
42 | eleq2 | |
|
43 | 42 | ralbidv | |
44 | 43 | onintss | |
45 | 1 41 44 | mpsyl | |
46 | 39 45 | eqssd | |