| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grumnud.1 |
⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } |
| 2 |
|
grumnud.2 |
⊢ ( 𝜑 → 𝐺 ∈ Univ ) |
| 3 |
|
eqid |
⊢ ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) = ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) |
| 4 |
|
brxp |
⊢ ( 𝑖 ( 𝐺 × 𝐺 ) ℎ ↔ ( 𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺 ) ) |
| 5 |
|
brin |
⊢ ( 𝑖 ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) ℎ ↔ ( 𝑖 { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ℎ ∧ 𝑖 ( 𝐺 × 𝐺 ) ℎ ) ) |
| 6 |
5
|
rbaib |
⊢ ( 𝑖 ( 𝐺 × 𝐺 ) ℎ → ( 𝑖 ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) ℎ ↔ 𝑖 { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ℎ ) ) |
| 7 |
4 6
|
sylbir |
⊢ ( ( 𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺 ) → ( 𝑖 ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) ℎ ↔ 𝑖 { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ℎ ) ) |
| 8 |
|
vex |
⊢ 𝑖 ∈ V |
| 9 |
|
vex |
⊢ ℎ ∈ V |
| 10 |
|
simpr |
⊢ ( ( ( 𝑏 = 𝑖 ∧ 𝑐 = ℎ ) ∧ 𝑑 = 𝑗 ) → 𝑑 = 𝑗 ) |
| 11 |
10
|
unieqd |
⊢ ( ( ( 𝑏 = 𝑖 ∧ 𝑐 = ℎ ) ∧ 𝑑 = 𝑗 ) → ∪ 𝑑 = ∪ 𝑗 ) |
| 12 |
|
simplr |
⊢ ( ( ( 𝑏 = 𝑖 ∧ 𝑐 = ℎ ) ∧ 𝑑 = 𝑗 ) → 𝑐 = ℎ ) |
| 13 |
11 12
|
eqeq12d |
⊢ ( ( ( 𝑏 = 𝑖 ∧ 𝑐 = ℎ ) ∧ 𝑑 = 𝑗 ) → ( ∪ 𝑑 = 𝑐 ↔ ∪ 𝑗 = ℎ ) ) |
| 14 |
|
elequ1 |
⊢ ( 𝑑 = 𝑗 → ( 𝑑 ∈ 𝑓 ↔ 𝑗 ∈ 𝑓 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝑏 = 𝑖 ∧ 𝑐 = ℎ ) ∧ 𝑑 = 𝑗 ) → ( 𝑑 ∈ 𝑓 ↔ 𝑗 ∈ 𝑓 ) ) |
| 16 |
|
eleq12 |
⊢ ( ( 𝑏 = 𝑖 ∧ 𝑑 = 𝑗 ) → ( 𝑏 ∈ 𝑑 ↔ 𝑖 ∈ 𝑗 ) ) |
| 17 |
16
|
adantlr |
⊢ ( ( ( 𝑏 = 𝑖 ∧ 𝑐 = ℎ ) ∧ 𝑑 = 𝑗 ) → ( 𝑏 ∈ 𝑑 ↔ 𝑖 ∈ 𝑗 ) ) |
| 18 |
13 15 17
|
3anbi123d |
⊢ ( ( ( 𝑏 = 𝑖 ∧ 𝑐 = ℎ ) ∧ 𝑑 = 𝑗 ) → ( ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) ↔ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ) |
| 19 |
18
|
cbvexdvaw |
⊢ ( ( 𝑏 = 𝑖 ∧ 𝑐 = ℎ ) → ( ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) ↔ ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ) |
| 20 |
|
eqid |
⊢ { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } = { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } |
| 21 |
8 9 19 20
|
braba |
⊢ ( 𝑖 { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ℎ ↔ ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) |
| 22 |
7 21
|
bitrdi |
⊢ ( ( 𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺 ) → ( 𝑖 ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) ℎ ↔ ∃ 𝑗 ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ) |
| 23 |
|
simplr3 |
⊢ ( ( ( ℎ ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ∧ 𝑢 = 𝑗 ) → 𝑖 ∈ 𝑗 ) |
| 24 |
|
simpr |
⊢ ( ( ( ℎ ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ∧ 𝑢 = 𝑗 ) → 𝑢 = 𝑗 ) |
| 25 |
23 24
|
eleqtrrd |
⊢ ( ( ( ℎ ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ∧ 𝑢 = 𝑗 ) → 𝑖 ∈ 𝑢 ) |
| 26 |
24
|
unieqd |
⊢ ( ( ( ℎ ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ∧ 𝑢 = 𝑗 ) → ∪ 𝑢 = ∪ 𝑗 ) |
| 27 |
|
simplr1 |
⊢ ( ( ( ℎ ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ∧ 𝑢 = 𝑗 ) → ∪ 𝑗 = ℎ ) |
| 28 |
26 27
|
eqtrd |
⊢ ( ( ( ℎ ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ∧ 𝑢 = 𝑗 ) → ∪ 𝑢 = ℎ ) |
| 29 |
|
simpll |
⊢ ( ( ( ℎ ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ∧ 𝑢 = 𝑗 ) → ℎ ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ) |
| 30 |
28 29
|
eqeltrd |
⊢ ( ( ( ℎ ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ∧ 𝑢 = 𝑗 ) → ∪ 𝑢 ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ) |
| 31 |
25 30
|
jca |
⊢ ( ( ( ℎ ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) ∧ 𝑢 = 𝑗 ) → ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ) ) |
| 32 |
|
simpr2 |
⊢ ( ( ℎ ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) → 𝑗 ∈ 𝑓 ) |
| 33 |
31 32
|
rspcime |
⊢ ( ( ℎ ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( ∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗 ) ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ ( ( { 〈 𝑏 , 𝑐 〉 ∣ ∃ 𝑑 ( ∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ) ) |
| 34 |
1 2 3 22 33
|
grumnudlem |
⊢ ( 𝜑 → 𝐺 ∈ 𝑀 ) |