Metamath Proof Explorer


Theorem grumnud

Description: Grothendieck universes are minimal universes. (Contributed by Rohan Ridenour, 12-Aug-2023)

Ref Expression
Hypotheses grumnud.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
grumnud.2 ( 𝜑𝐺 ∈ Univ )
Assertion grumnud ( 𝜑𝐺𝑀 )

Proof

Step Hyp Ref Expression
1 grumnud.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 grumnud.2 ( 𝜑𝐺 ∈ Univ )
3 eqid ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) = ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) )
4 brxp ( 𝑖 ( 𝐺 × 𝐺 ) ↔ ( 𝑖𝐺𝐺 ) )
5 brin ( 𝑖 ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) ↔ ( 𝑖 { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } 𝑖 ( 𝐺 × 𝐺 ) ) )
6 5 rbaib ( 𝑖 ( 𝐺 × 𝐺 ) → ( 𝑖 ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) 𝑖 { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ) )
7 4 6 sylbir ( ( 𝑖𝐺𝐺 ) → ( 𝑖 ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) 𝑖 { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ) )
8 vex 𝑖 ∈ V
9 vex ∈ V
10 simpr ( ( ( 𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗 ) → 𝑑 = 𝑗 )
11 10 unieqd ( ( ( 𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗 ) → 𝑑 = 𝑗 )
12 simplr ( ( ( 𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗 ) → 𝑐 = )
13 11 12 eqeq12d ( ( ( 𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗 ) → ( 𝑑 = 𝑐 𝑗 = ) )
14 elequ1 ( 𝑑 = 𝑗 → ( 𝑑𝑓𝑗𝑓 ) )
15 14 adantl ( ( ( 𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗 ) → ( 𝑑𝑓𝑗𝑓 ) )
16 eleq12 ( ( 𝑏 = 𝑖𝑑 = 𝑗 ) → ( 𝑏𝑑𝑖𝑗 ) )
17 16 adantlr ( ( ( 𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗 ) → ( 𝑏𝑑𝑖𝑗 ) )
18 13 15 17 3anbi123d ( ( ( 𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗 ) → ( ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) ↔ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) )
19 18 cbvexdvaw ( ( 𝑏 = 𝑖𝑐 = ) → ( ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) ↔ ∃ 𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) )
20 eqid { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } = { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) }
21 8 9 19 20 braba ( 𝑖 { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ↔ ∃ 𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) )
22 7 21 bitrdi ( ( 𝑖𝐺𝐺 ) → ( 𝑖 ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) ↔ ∃ 𝑗 ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) )
23 simplr3 ( ( ( ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) ∧ 𝑢 = 𝑗 ) → 𝑖𝑗 )
24 simpr ( ( ( ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) ∧ 𝑢 = 𝑗 ) → 𝑢 = 𝑗 )
25 23 24 eleqtrrd ( ( ( ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) ∧ 𝑢 = 𝑗 ) → 𝑖𝑢 )
26 24 unieqd ( ( ( ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) ∧ 𝑢 = 𝑗 ) → 𝑢 = 𝑗 )
27 simplr1 ( ( ( ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) ∧ 𝑢 = 𝑗 ) → 𝑗 = )
28 26 27 eqtrd ( ( ( ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) ∧ 𝑢 = 𝑗 ) → 𝑢 = )
29 simpll ( ( ( ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) ∧ 𝑢 = 𝑗 ) → ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) )
30 28 29 eqeltrd ( ( ( ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) ∧ 𝑢 = 𝑗 ) → 𝑢 ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) )
31 25 30 jca ( ( ( ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) ∧ 𝑢 = 𝑗 ) → ( 𝑖𝑢 𝑢 ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ) )
32 simpr2 ( ( ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) → 𝑗𝑓 )
33 31 32 rspcime ( ( ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗 ) ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢 ∈ ( ( { ⟨ 𝑏 , 𝑐 ⟩ ∣ ∃ 𝑑 ( 𝑑 = 𝑐𝑑𝑓𝑏𝑑 ) } ∩ ( 𝐺 × 𝐺 ) ) Coll 𝑧 ) ) )
34 1 2 3 22 33 grumnudlem ( 𝜑𝐺𝑀 )