Metamath Proof Explorer


Theorem grumnud

Description: Grothendieck universes are minimal universes. (Contributed by Rohan Ridenour, 12-Aug-2023)

Ref Expression
Hypotheses grumnud.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
grumnud.2 φ G Univ
Assertion grumnud φ G M

Proof

Step Hyp Ref Expression
1 grumnud.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 grumnud.2 φ G Univ
3 eqid b c | d d = c d f b d G × G = b c | d d = c d f b d G × G
4 brxp i G × G h i G h G
5 brin i b c | d d = c d f b d G × G h i b c | d d = c d f b d h i G × G h
6 5 rbaib i G × G h i b c | d d = c d f b d G × G h i b c | d d = c d f b d h
7 4 6 sylbir i G h G i b c | d d = c d f b d G × G h i b c | d d = c d f b d h
8 vex i V
9 vex h V
10 simpr b = i c = h d = j d = j
11 10 unieqd b = i c = h d = j d = j
12 simplr b = i c = h d = j c = h
13 11 12 eqeq12d b = i c = h d = j d = c j = h
14 elequ1 d = j d f j f
15 14 adantl b = i c = h d = j d f j f
16 eleq12 b = i d = j b d i j
17 16 adantlr b = i c = h d = j b d i j
18 13 15 17 3anbi123d b = i c = h d = j d = c d f b d j = h j f i j
19 18 cbvexdvaw b = i c = h d d = c d f b d j j = h j f i j
20 eqid b c | d d = c d f b d = b c | d d = c d f b d
21 8 9 19 20 braba i b c | d d = c d f b d h j j = h j f i j
22 7 21 bitrdi i G h G i b c | d d = c d f b d G × G h j j = h j f i j
23 simplr3 h b c | d d = c d f b d G × G Coll z j = h j f i j u = j i j
24 simpr h b c | d d = c d f b d G × G Coll z j = h j f i j u = j u = j
25 23 24 eleqtrrd h b c | d d = c d f b d G × G Coll z j = h j f i j u = j i u
26 24 unieqd h b c | d d = c d f b d G × G Coll z j = h j f i j u = j u = j
27 simplr1 h b c | d d = c d f b d G × G Coll z j = h j f i j u = j j = h
28 26 27 eqtrd h b c | d d = c d f b d G × G Coll z j = h j f i j u = j u = h
29 simpll h b c | d d = c d f b d G × G Coll z j = h j f i j u = j h b c | d d = c d f b d G × G Coll z
30 28 29 eqeltrd h b c | d d = c d f b d G × G Coll z j = h j f i j u = j u b c | d d = c d f b d G × G Coll z
31 25 30 jca h b c | d d = c d f b d G × G Coll z j = h j f i j u = j i u u b c | d d = c d f b d G × G Coll z
32 simpr2 h b c | d d = c d f b d G × G Coll z j = h j f i j j f
33 31 32 rspcime h b c | d d = c d f b d G × G Coll z j = h j f i j u f i u u b c | d d = c d f b d G × G Coll z
34 1 2 3 22 33 grumnudlem φ G M