Metamath Proof Explorer


Theorem grumnud

Description: Grothendieck universes are minimal universes. (Contributed by Rohan Ridenour, 12-Aug-2023)

Ref Expression
Hypotheses grumnud.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
grumnud.2 φGUniv
Assertion grumnud φGM

Proof

Step Hyp Ref Expression
1 grumnud.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 grumnud.2 φGUniv
3 eqid bc|dd=cdfbdG×G=bc|dd=cdfbdG×G
4 brxp iG×GhiGhG
5 brin ibc|dd=cdfbdG×Ghibc|dd=cdfbdhiG×Gh
6 5 rbaib iG×Ghibc|dd=cdfbdG×Ghibc|dd=cdfbdh
7 4 6 sylbir iGhGibc|dd=cdfbdG×Ghibc|dd=cdfbdh
8 vex iV
9 vex hV
10 simpr b=ic=hd=jd=j
11 10 unieqd b=ic=hd=jd=j
12 simplr b=ic=hd=jc=h
13 11 12 eqeq12d b=ic=hd=jd=cj=h
14 elequ1 d=jdfjf
15 14 adantl b=ic=hd=jdfjf
16 eleq12 b=id=jbdij
17 16 adantlr b=ic=hd=jbdij
18 13 15 17 3anbi123d b=ic=hd=jd=cdfbdj=hjfij
19 18 cbvexdvaw b=ic=hdd=cdfbdjj=hjfij
20 eqid bc|dd=cdfbd=bc|dd=cdfbd
21 8 9 19 20 braba ibc|dd=cdfbdhjj=hjfij
22 7 21 bitrdi iGhGibc|dd=cdfbdG×Ghjj=hjfij
23 simplr3 hbc|dd=cdfbdG×GCollzj=hjfiju=jij
24 simpr hbc|dd=cdfbdG×GCollzj=hjfiju=ju=j
25 23 24 eleqtrrd hbc|dd=cdfbdG×GCollzj=hjfiju=jiu
26 24 unieqd hbc|dd=cdfbdG×GCollzj=hjfiju=ju=j
27 simplr1 hbc|dd=cdfbdG×GCollzj=hjfiju=jj=h
28 26 27 eqtrd hbc|dd=cdfbdG×GCollzj=hjfiju=ju=h
29 simpll hbc|dd=cdfbdG×GCollzj=hjfiju=jhbc|dd=cdfbdG×GCollz
30 28 29 eqeltrd hbc|dd=cdfbdG×GCollzj=hjfiju=jubc|dd=cdfbdG×GCollz
31 25 30 jca hbc|dd=cdfbdG×GCollzj=hjfiju=jiuubc|dd=cdfbdG×GCollz
32 simpr2 hbc|dd=cdfbdG×GCollzj=hjfijjf
33 31 32 rspcime hbc|dd=cdfbdG×GCollzj=hjfijufiuubc|dd=cdfbdG×GCollz
34 1 2 3 22 33 grumnudlem φGM