Description: Grothendieck universes are minimal universes. (Contributed by Rohan Ridenour, 12-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grumnud.1 | |
|
grumnud.2 | |
||
Assertion | grumnud | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grumnud.1 | |
|
2 | grumnud.2 | |
|
3 | eqid | |
|
4 | brxp | |
|
5 | brin | |
|
6 | 5 | rbaib | |
7 | 4 6 | sylbir | |
8 | vex | |
|
9 | vex | |
|
10 | simpr | |
|
11 | 10 | unieqd | |
12 | simplr | |
|
13 | 11 12 | eqeq12d | |
14 | elequ1 | |
|
15 | 14 | adantl | |
16 | eleq12 | |
|
17 | 16 | adantlr | |
18 | 13 15 17 | 3anbi123d | |
19 | 18 | cbvexdvaw | |
20 | eqid | |
|
21 | 8 9 19 20 | braba | |
22 | 7 21 | bitrdi | |
23 | simplr3 | |
|
24 | simpr | |
|
25 | 23 24 | eleqtrrd | |
26 | 24 | unieqd | |
27 | simplr1 | |
|
28 | 26 27 | eqtrd | |
29 | simpll | |
|
30 | 28 29 | eqeltrd | |
31 | 25 30 | jca | |
32 | simpr2 | |
|
33 | 31 32 | rspcime | |
34 | 1 2 3 22 33 | grumnudlem | |