Metamath Proof Explorer


Theorem grumnudlem

Description: Lemma for grumnud . (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses grumnudlem.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
grumnudlem.2 φ G Univ
grumnudlem.3 F = b c | d d = c d f b d G × G
grumnudlem.4 i G h G i F h j j = h j f i j
grumnudlem.5 h F Coll z j = h j f i j u f i u u F Coll z
Assertion grumnudlem φ G M

Proof

Step Hyp Ref Expression
1 grumnudlem.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 grumnudlem.2 φ G Univ
3 grumnudlem.3 F = b c | d d = c d f b d G × G
4 grumnudlem.4 i G h G i F h j j = h j f i j
5 grumnudlem.5 h F Coll z j = h j f i j u f i u u F Coll z
6 gruss G Univ z G a z a G
7 2 6 syl3an1 φ z G a z a G
8 7 3expia φ z G a z a G
9 8 alrimiv φ z G a a z a G
10 pwss 𝒫 z G a a z a G
11 9 10 sylibr φ z G 𝒫 z G
12 ssun1 𝒫 z 𝒫 z F Coll z
13 simp3 φ z G w = 𝒫 z F Coll z w = 𝒫 z F Coll z
14 12 13 sseqtrrid φ z G w = 𝒫 z F Coll z 𝒫 z w
15 simp1l3 φ z G w = 𝒫 z F Coll z i z v G i v v f w = 𝒫 z F Coll z
16 simp1r φ z G w = 𝒫 z F Coll z i z v G i v v f i z
17 simpr h = v j = v j = v
18 17 unieqd h = v j = v j = v
19 simpl h = v j = v h = v
20 18 19 eqtr4d h = v j = v j = h
21 20 adantll φ z G w = 𝒫 z F Coll z i z v G i v v f h = v j = v j = h
22 simpr φ z G w = 𝒫 z F Coll z i z v G i v v f h = v j = v j = v
23 simpll3 φ z G w = 𝒫 z F Coll z i z v G i v v f h = v j = v i v v f
24 23 simprd φ z G w = 𝒫 z F Coll z i z v G i v v f h = v j = v v f
25 22 24 eqeltrd φ z G w = 𝒫 z F Coll z i z v G i v v f h = v j = v j f
26 23 simpld φ z G w = 𝒫 z F Coll z i z v G i v v f h = v j = v i v
27 26 22 eleqtrrd φ z G w = 𝒫 z F Coll z i z v G i v v f h = v j = v i j
28 21 25 27 3jca φ z G w = 𝒫 z F Coll z i z v G i v v f h = v j = v j = h j f i j
29 simpl2 φ z G w = 𝒫 z F Coll z i z v G i v v f h = v v G
30 28 29 rr-spce φ z G w = 𝒫 z F Coll z i z v G i v v f h = v j j = h j f i j
31 simp1l1 φ z G w = 𝒫 z F Coll z i z v G i v v f φ
32 31 2 syl φ z G w = 𝒫 z F Coll z i z v G i v v f G Univ
33 simp2 φ z G w = 𝒫 z F Coll z i z v G i v v f v G
34 gruuni G Univ v G v G
35 32 33 34 syl2anc φ z G w = 𝒫 z F Coll z i z v G i v v f v G
36 30 35 rspcime φ z G w = 𝒫 z F Coll z i z v G i v v f h G j j = h j f i j
37 simpl1 φ z G w = 𝒫 z F Coll z i z φ
38 37 2 syl φ z G w = 𝒫 z F Coll z i z G Univ
39 simpl2 φ z G w = 𝒫 z F Coll z i z z G
40 simpr φ z G w = 𝒫 z F Coll z i z i z
41 gruel G Univ z G i z i G
42 38 39 40 41 syl3anc φ z G w = 𝒫 z F Coll z i z i G
43 42 3ad2ant1 φ z G w = 𝒫 z F Coll z i z v G i v v f i G
44 43 4 sylan φ z G w = 𝒫 z F Coll z i z v G i v v f h G i F h j j = h j f i j
45 44 rexbidva φ z G w = 𝒫 z F Coll z i z v G i v v f h G i F h h G j j = h j f i j
46 36 45 mpbird φ z G w = 𝒫 z F Coll z i z v G i v v f h G i F h
47 rexex h G i F h h i F h
48 46 47 syl φ z G w = 𝒫 z F Coll z i z v G i v v f h i F h
49 16 48 cpcoll2d φ z G w = 𝒫 z F Coll z i z v G i v v f h F Coll z i F h
50 32 adantr φ z G w = 𝒫 z F Coll z i z v G i v v f h F Coll z G Univ
51 39 3ad2ant1 φ z G w = 𝒫 z F Coll z i z v G i v v f z G
52 51 adantr φ z G w = 𝒫 z F Coll z i z v G i v v f h F Coll z z G
53 2 adantr φ z G G Univ
54 inss2 b c | d d = c d f b d G × G G × G
55 3 54 eqsstri F G × G
56 55 a1i φ z G F G × G
57 simpr φ z G z G
58 53 56 57 grucollcld φ z G F Coll z G
59 31 52 58 syl2an2r φ z G w = 𝒫 z F Coll z i z v G i v v f h F Coll z F Coll z G
60 simpr φ z G w = 𝒫 z F Coll z i z v G i v v f h F Coll z h F Coll z
61 gruel G Univ F Coll z G h F Coll z h G
62 50 59 60 61 syl3anc φ z G w = 𝒫 z F Coll z i z v G i v v f h F Coll z h G
63 43 62 4 syl2an2r φ z G w = 𝒫 z F Coll z i z v G i v v f h F Coll z i F h j j = h j f i j
64 63 rexbidva φ z G w = 𝒫 z F Coll z i z v G i v v f h F Coll z i F h h F Coll z j j = h j f i j
65 49 64 mpbid φ z G w = 𝒫 z F Coll z i z v G i v v f h F Coll z j j = h j f i j
66 rexcom4 h F Coll z j j = h j f i j j h F Coll z j = h j f i j
67 5 rexlimiva h F Coll z j = h j f i j u f i u u F Coll z
68 67 exlimiv j h F Coll z j = h j f i j u f i u u F Coll z
69 66 68 sylbi h F Coll z j j = h j f i j u f i u u F Coll z
70 65 69 syl φ z G w = 𝒫 z F Coll z i z v G i v v f u f i u u F Coll z
71 elssuni u F Coll z u F Coll z
72 ssun2 F Coll z 𝒫 z F Coll z
73 71 72 sstrdi u F Coll z u 𝒫 z F Coll z
74 73 adantl w = 𝒫 z F Coll z u F Coll z u 𝒫 z F Coll z
75 simpl w = 𝒫 z F Coll z u F Coll z w = 𝒫 z F Coll z
76 74 75 sseqtrrd w = 𝒫 z F Coll z u F Coll z u w
77 76 ex w = 𝒫 z F Coll z u F Coll z u w
78 77 anim2d w = 𝒫 z F Coll z i u u F Coll z i u u w
79 78 reximdv w = 𝒫 z F Coll z u f i u u F Coll z u f i u u w
80 15 70 79 sylc φ z G w = 𝒫 z F Coll z i z v G i v v f u f i u u w
81 80 rexlimdv3a φ z G w = 𝒫 z F Coll z i z v G i v v f u f i u u w
82 81 ralrimiva φ z G w = 𝒫 z F Coll z i z v G i v v f u f i u u w
83 14 82 jca φ z G w = 𝒫 z F Coll z 𝒫 z w i z v G i v v f u f i u u w
84 83 3expa φ z G w = 𝒫 z F Coll z 𝒫 z w i z v G i v v f u f i u u w
85 grupw G Univ z G 𝒫 z G
86 2 85 sylan φ z G 𝒫 z G
87 gruuni G Univ F Coll z G F Coll z G
88 2 58 87 syl2an2r φ z G F Coll z G
89 gruun G Univ 𝒫 z G F Coll z G 𝒫 z F Coll z G
90 53 86 88 89 syl3anc φ z G 𝒫 z F Coll z G
91 84 90 rspcime φ z G w G 𝒫 z w i z v G i v v f u f i u u w
92 91 alrimiv φ z G f w G 𝒫 z w i z v G i v v f u f i u u w
93 11 92 jca φ z G 𝒫 z G f w G 𝒫 z w i z v G i v v f u f i u u w
94 93 ralrimiva φ z G 𝒫 z G f w G 𝒫 z w i z v G i v v f u f i u u w
95 1 ismnu G Univ G M z G 𝒫 z G f w G 𝒫 z w i z v G i v v f u f i u u w
96 2 95 syl φ G M z G 𝒫 z G f w G 𝒫 z w i z v G i v v f u f i u u w
97 94 96 mpbird φ G M