Metamath Proof Explorer


Theorem grumnueq

Description: The class of Grothendieck universes is equal to the class of minimal universes. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Assertion grumnueq Univ=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn

Proof

Step Hyp Ref Expression
1 eqid k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 id xUnivxUniv
3 1 2 grumnud xUnivxk|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
4 id xk|lk𝒫lkmnk𝒫lnplqkpqqmrmprrnxk|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
5 1 4 mnugrud xk|lk𝒫lkmnk𝒫lnplqkpqqmrmprrnxUniv
6 3 5 impbii xUnivxk|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
7 6 eqriv Univ=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn