Metamath Proof Explorer


Theorem grumnueq

Description: The class of Grothendieck universes is equal to the class of minimal universes. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Assertion grumnueq Univ = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n

Proof

Step Hyp Ref Expression
1 eqid k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 id x Univ x Univ
3 1 2 grumnud x Univ x k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
4 id x k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n x k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
5 1 4 mnugrud x k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n x Univ
6 3 5 impbii x Univ x k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
7 6 eqriv Univ = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n