Metamath Proof Explorer


Theorem mnutrd

Description: Minimal universes are transitive. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnutrd.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
mnutrd.2 ( 𝜑𝑈𝑀 )
Assertion mnutrd ( 𝜑 → Tr 𝑈 )

Proof

Step Hyp Ref Expression
1 mnutrd.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 mnutrd.2 ( 𝜑𝑈𝑀 )
3 2 adantr ( ( 𝜑 ∧ ( 𝑥𝑦𝑦𝑈 ) ) → 𝑈𝑀 )
4 simprr ( ( 𝜑 ∧ ( 𝑥𝑦𝑦𝑈 ) ) → 𝑦𝑈 )
5 simprl ( ( 𝜑 ∧ ( 𝑥𝑦𝑦𝑈 ) ) → 𝑥𝑦 )
6 1 3 4 5 mnutrcld ( ( 𝜑 ∧ ( 𝑥𝑦𝑦𝑈 ) ) → 𝑥𝑈 )
7 6 ex ( 𝜑 → ( ( 𝑥𝑦𝑦𝑈 ) → 𝑥𝑈 ) )
8 7 alrimivv ( 𝜑 → ∀ 𝑥𝑦 ( ( 𝑥𝑦𝑦𝑈 ) → 𝑥𝑈 ) )
9 dftr2 ( Tr 𝑈 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝑦𝑦𝑈 ) → 𝑥𝑈 ) )
10 8 9 sylibr ( 𝜑 → Tr 𝑈 )