Step |
Hyp |
Ref |
Expression |
1 |
|
mnutrd.1 |
⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } |
2 |
|
mnutrd.2 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) |
3 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑀 ) |
4 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
5 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑦 ) |
6 |
1 3 4 5
|
mnutrcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑈 ) |
7 |
6
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) ) |
8 |
7
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) ) |
9 |
|
dftr2 |
⊢ ( Tr 𝑈 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) ) |
10 |
8 9
|
sylibr |
⊢ ( 𝜑 → Tr 𝑈 ) |