Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Shorter primitive equivalent of ax-groth
Minimal universes
mnutrd
Next ⟩
mnurndlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
mnutrd
Description:
Minimal universes are transitive.
(Contributed by
Rohan Ridenour
, 13-Aug-2023)
Ref
Expression
Hypotheses
mnutrd.1
⊢
M
=
k
|
∀
l
∈
k
𝒫
l
⊆
k
∧
∀
m
∃
n
∈
k
𝒫
l
⊆
n
∧
∀
p
∈
l
∃
q
∈
k
p
∈
q
∧
q
∈
m
→
∃
r
∈
m
p
∈
r
∧
⋃
r
⊆
n
mnutrd.2
⊢
φ
→
U
∈
M
Assertion
mnutrd
⊢
φ
→
Tr
⁡
U
Proof
Step
Hyp
Ref
Expression
1
mnutrd.1
⊢
M
=
k
|
∀
l
∈
k
𝒫
l
⊆
k
∧
∀
m
∃
n
∈
k
𝒫
l
⊆
n
∧
∀
p
∈
l
∃
q
∈
k
p
∈
q
∧
q
∈
m
→
∃
r
∈
m
p
∈
r
∧
⋃
r
⊆
n
2
mnutrd.2
⊢
φ
→
U
∈
M
3
2
adantr
⊢
φ
∧
x
∈
y
∧
y
∈
U
→
U
∈
M
4
simprr
⊢
φ
∧
x
∈
y
∧
y
∈
U
→
y
∈
U
5
simprl
⊢
φ
∧
x
∈
y
∧
y
∈
U
→
x
∈
y
6
1
3
4
5
mnutrcld
⊢
φ
∧
x
∈
y
∧
y
∈
U
→
x
∈
U
7
6
ex
⊢
φ
→
x
∈
y
∧
y
∈
U
→
x
∈
U
8
7
alrimivv
⊢
φ
→
∀
x
∀
y
x
∈
y
∧
y
∈
U
→
x
∈
U
9
dftr2
⊢
Tr
⁡
U
↔
∀
x
∀
y
x
∈
y
∧
y
∈
U
→
x
∈
U
10
8
9
sylibr
⊢
φ
→
Tr
⁡
U