Metamath Proof Explorer


Theorem mnutrd

Description: Minimal universes are transitive. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnutrd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnutrd.2 φUM
Assertion mnutrd φTrU

Proof

Step Hyp Ref Expression
1 mnutrd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnutrd.2 φUM
3 2 adantr φxyyUUM
4 simprr φxyyUyU
5 simprl φxyyUxy
6 1 3 4 5 mnutrcld φxyyUxU
7 6 ex φxyyUxU
8 7 alrimivv φxyxyyUxU
9 dftr2 TrUxyxyyUxU
10 8 9 sylibr φTrU