Metamath Proof Explorer


Theorem mnurndlem1

Description: Lemma for mnurnd . (Contributed by Rohan Ridenour, 12-Aug-2023)

Ref Expression
Hypotheses mnurndlem1.3 φ F : A U
mnurndlem1.4 A V
mnurndlem1.6 φ i A v ran a A a F a A i v u ran a A a F a A i u u w
Assertion mnurndlem1 φ ran F w

Proof

Step Hyp Ref Expression
1 mnurndlem1.3 φ F : A U
2 mnurndlem1.4 A V
3 mnurndlem1.6 φ i A v ran a A a F a A i v u ran a A a F a A i u u w
4 1 ffnd φ F Fn A
5 vex i V
6 5 prid1 i i F i A
7 simpr i A v = i F i A v = i F i A
8 6 7 eleqtrrid i A v = i F i A i v
9 eqid a A a F a A = a A a F a A
10 id i A i A
11 prex i F i A V
12 11 a1i i A i F i A V
13 id a = i a = i
14 fveq2 a = i F a = F i
15 14 preq1d a = i F a A = F i A
16 13 15 preq12d a = i a F a A = i F i A
17 16 adantl i A a = i a F a A = i F i A
18 9 10 12 17 rr-elrnmpt3d i A i F i A ran a A a F a A
19 8 18 rspcime i A v ran a A a F a A i v
20 19 rgen i A v ran a A a F a A i v
21 ralim i A v ran a A a F a A i v u ran a A a F a A i u u w i A v ran a A a F a A i v i A u ran a A a F a A i u u w
22 3 20 21 mpisyl φ i A u ran a A a F a A i u u w
23 prex a F a A V
24 23 rgenw a A a F a A V
25 eleq2 u = a F a A i u i a F a A
26 unieq u = a F a A u = a F a A
27 26 sseq1d u = a F a A u w a F a A w
28 25 27 anbi12d u = a F a A i u u w i a F a A a F a A w
29 9 28 rexrnmptw a A a F a A V u ran a A a F a A i u u w a A i a F a A a F a A w
30 24 29 ax-mp u ran a A a F a A i u u w a A i a F a A a F a A w
31 simplrl a A i a F a A a F a A w i A i a F a A
32 simpr a A i a F a A a F a A w i A i A
33 2 prid2 A F a A
34 elnotel A F a A ¬ F a A A
35 33 34 ax-mp ¬ F a A A
36 35 a1i a A i a F a A a F a A w i A ¬ F a A A
37 32 36 elnelneq2d a A i a F a A a F a A w i A ¬ i = F a A
38 elpri i a F a A i = a i = F a A
39 38 orcomd i a F a A i = F a A i = a
40 39 ord i a F a A ¬ i = F a A i = a
41 31 37 40 sylc a A i a F a A a F a A w i A i = a
42 41 fveq2d a A i a F a A a F a A w i A F i = F a
43 simplrr a A i a F a A a F a A w i A a F a A w
44 vex a V
45 prex F a A V
46 44 45 unipr a F a A = a F a A
47 46 sseq1i a F a A w a F a A w
48 unss a w F a A w a F a A w
49 48 bicomi a F a A w a w F a A w
50 49 simprbi a F a A w F a A w
51 47 50 sylbi a F a A w F a A w
52 fvex F a V
53 52 2 prss F a w A w F a A w
54 53 bicomi F a A w F a w A w
55 54 simplbi F a A w F a w
56 43 51 55 3syl a A i a F a A a F a A w i A F a w
57 42 56 eqeltrd a A i a F a A a F a A w i A F i w
58 57 ex a A i a F a A a F a A w i A F i w
59 58 rexlimiva a A i a F a A a F a A w i A F i w
60 30 59 sylbi u ran a A a F a A i u u w i A F i w
61 60 com12 i A u ran a A a F a A i u u w F i w
62 61 ralimia i A u ran a A a F a A i u u w i A F i w
63 22 62 syl φ i A F i w
64 fnfvrnss F Fn A i A F i w ran F w
65 4 63 64 syl2anc φ ran F w