Metamath Proof Explorer


Theorem mnurndlem2

Description: Lemma for mnurnd . Deduction theorem input. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnurndlem2.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
mnurndlem2.2 φ U M
mnurndlem2.3 φ A U
mnurndlem2.4 φ F : A U
mnurndlem2.5 A V
Assertion mnurndlem2 φ ran F U

Proof

Step Hyp Ref Expression
1 mnurndlem2.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 mnurndlem2.2 φ U M
3 mnurndlem2.3 φ A U
4 mnurndlem2.4 φ F : A U
5 mnurndlem2.5 A V
6 2 adantr φ a A U M
7 3 adantr φ a A A U
8 simpr φ a A a A
9 1 6 7 8 mnutrcld φ a A a U
10 4 ffvelrnda φ a A F a U
11 1 6 10 7 mnuprd φ a A F a A U
12 1 6 9 11 mnuprd φ a A a F a A U
13 12 ralrimiva φ a A a F a A U
14 eqid a A a F a A = a A a F a A
15 14 rnmptss a A a F a A U ran a A a F a A U
16 13 15 syl φ ran a A a F a A U
17 1 2 3 16 mnuop3d φ w U i A v ran a A a F a A i v u ran a A a F a A i u u w
18 simprl φ w U i A v ran a A a F a A i v u ran a A a F a A i u u w w U
19 sseq2 b = w ran F b ran F w
20 19 adantl φ w U i A v ran a A a F a A i v u ran a A a F a A i u u w b = w ran F b ran F w
21 4 adantr φ w U i A v ran a A a F a A i v u ran a A a F a A i u u w F : A U
22 simprr φ w U i A v ran a A a F a A i v u ran a A a F a A i u u w i A v ran a A a F a A i v u ran a A a F a A i u u w
23 21 5 22 mnurndlem1 φ w U i A v ran a A a F a A i v u ran a A a F a A i u u w ran F w
24 18 20 23 rspcedvd φ w U i A v ran a A a F a A i v u ran a A a F a A i u u w b U ran F b
25 17 24 rexlimddv φ b U ran F b
26 1 2 25 mnuss2d φ ran F U