Metamath Proof Explorer


Theorem mnurndlem2

Description: Lemma for mnurnd . Deduction theorem input. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnurndlem2.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnurndlem2.2 φUM
mnurndlem2.3 φAU
mnurndlem2.4 φF:AU
mnurndlem2.5 AV
Assertion mnurndlem2 φranFU

Proof

Step Hyp Ref Expression
1 mnurndlem2.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnurndlem2.2 φUM
3 mnurndlem2.3 φAU
4 mnurndlem2.4 φF:AU
5 mnurndlem2.5 AV
6 2 adantr φaAUM
7 3 adantr φaAAU
8 simpr φaAaA
9 1 6 7 8 mnutrcld φaAaU
10 4 ffvelcdmda φaAFaU
11 1 6 10 7 mnuprd φaAFaAU
12 1 6 9 11 mnuprd φaAaFaAU
13 12 ralrimiva φaAaFaAU
14 eqid aAaFaA=aAaFaA
15 14 rnmptss aAaFaAUranaAaFaAU
16 13 15 syl φranaAaFaAU
17 1 2 3 16 mnuop3d φwUiAvranaAaFaAivuranaAaFaAiuuw
18 simprl φwUiAvranaAaFaAivuranaAaFaAiuuwwU
19 sseq2 b=wranFbranFw
20 19 adantl φwUiAvranaAaFaAivuranaAaFaAiuuwb=wranFbranFw
21 4 adantr φwUiAvranaAaFaAivuranaAaFaAiuuwF:AU
22 simprr φwUiAvranaAaFaAivuranaAaFaAiuuwiAvranaAaFaAivuranaAaFaAiuuw
23 21 5 22 mnurndlem1 φwUiAvranaAaFaAivuranaAaFaAiuuwranFw
24 18 20 23 rspcedvd φwUiAvranaAaFaAivuranaAaFaAiuuwbUranFb
25 17 24 rexlimddv φbUranFb
26 1 2 25 mnuss2d φranFU