Description: Lemma for mnurnd . Deduction theorem input. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnurndlem2.1 | |
|
mnurndlem2.2 | |
||
mnurndlem2.3 | |
||
mnurndlem2.4 | |
||
mnurndlem2.5 | |
||
Assertion | mnurndlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnurndlem2.1 | |
|
2 | mnurndlem2.2 | |
|
3 | mnurndlem2.3 | |
|
4 | mnurndlem2.4 | |
|
5 | mnurndlem2.5 | |
|
6 | 2 | adantr | |
7 | 3 | adantr | |
8 | simpr | |
|
9 | 1 6 7 8 | mnutrcld | |
10 | 4 | ffvelcdmda | |
11 | 1 6 10 7 | mnuprd | |
12 | 1 6 9 11 | mnuprd | |
13 | 12 | ralrimiva | |
14 | eqid | |
|
15 | 14 | rnmptss | |
16 | 13 15 | syl | |
17 | 1 2 3 16 | mnuop3d | |
18 | simprl | |
|
19 | sseq2 | |
|
20 | 19 | adantl | |
21 | 4 | adantr | |
22 | simprr | |
|
23 | 21 5 22 | mnurndlem1 | |
24 | 18 20 23 | rspcedvd | |
25 | 17 24 | rexlimddv | |
26 | 1 2 25 | mnuss2d | |