Metamath Proof Explorer
Description: Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
mnutrcld.1 |
|
|
|
mnutrcld.2 |
|
|
|
mnutrcld.3 |
|
|
|
mnutrcld.4 |
|
|
Assertion |
mnutrcld |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mnutrcld.1 |
|
2 |
|
mnutrcld.2 |
|
3 |
|
mnutrcld.3 |
|
4 |
|
mnutrcld.4 |
|
5 |
1 2 3
|
mnuunid |
|
6 |
|
elssuni |
|
7 |
4 6
|
syl |
|
8 |
1 2 5 7
|
mnussd |
|