Metamath Proof Explorer


Theorem mnutrcld

Description: Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnutrcld.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
mnutrcld.2 φ U M
mnutrcld.3 φ A U
mnutrcld.4 φ B A
Assertion mnutrcld φ B U

Proof

Step Hyp Ref Expression
1 mnutrcld.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 mnutrcld.2 φ U M
3 mnutrcld.3 φ A U
4 mnutrcld.4 φ B A
5 1 2 3 mnuunid φ A U
6 elssuni B A B A
7 4 6 syl φ B A
8 1 2 5 7 mnussd φ B U