Description: Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnutrcld.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
mnutrcld.2 | |- ( ph -> U e. M ) |
||
mnutrcld.3 | |- ( ph -> A e. U ) |
||
mnutrcld.4 | |- ( ph -> B e. A ) |
||
Assertion | mnutrcld | |- ( ph -> B e. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnutrcld.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
2 | mnutrcld.2 | |- ( ph -> U e. M ) |
|
3 | mnutrcld.3 | |- ( ph -> A e. U ) |
|
4 | mnutrcld.4 | |- ( ph -> B e. A ) |
|
5 | 1 2 3 | mnuunid | |- ( ph -> U. A e. U ) |
6 | elssuni | |- ( B e. A -> B C_ U. A ) |
|
7 | 4 6 | syl | |- ( ph -> B C_ U. A ) |
8 | 1 2 5 7 | mnussd | |- ( ph -> B e. U ) |