Description: Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mnutrcld.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
| mnutrcld.2 | |- ( ph -> U e. M ) |
||
| mnutrcld.3 | |- ( ph -> A e. U ) |
||
| mnutrcld.4 | |- ( ph -> B e. A ) |
||
| Assertion | mnutrcld | |- ( ph -> B e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnutrcld.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
| 2 | mnutrcld.2 | |- ( ph -> U e. M ) |
|
| 3 | mnutrcld.3 | |- ( ph -> A e. U ) |
|
| 4 | mnutrcld.4 | |- ( ph -> B e. A ) |
|
| 5 | 1 2 3 | mnuunid | |- ( ph -> U. A e. U ) |
| 6 | elssuni | |- ( B e. A -> B C_ U. A ) |
|
| 7 | 4 6 | syl | |- ( ph -> B C_ U. A ) |
| 8 | 1 2 5 7 | mnussd | |- ( ph -> B e. U ) |