Metamath Proof Explorer


Theorem mnutrcld

Description: Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnutrcld.1
|- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) }
mnutrcld.2
|- ( ph -> U e. M )
mnutrcld.3
|- ( ph -> A e. U )
mnutrcld.4
|- ( ph -> B e. A )
Assertion mnutrcld
|- ( ph -> B e. U )

Proof

Step Hyp Ref Expression
1 mnutrcld.1
 |-  M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) }
2 mnutrcld.2
 |-  ( ph -> U e. M )
3 mnutrcld.3
 |-  ( ph -> A e. U )
4 mnutrcld.4
 |-  ( ph -> B e. A )
5 1 2 3 mnuunid
 |-  ( ph -> U. A e. U )
6 elssuni
 |-  ( B e. A -> B C_ U. A )
7 4 6 syl
 |-  ( ph -> B C_ U. A )
8 1 2 5 7 mnussd
 |-  ( ph -> B e. U )