Metamath Proof Explorer


Theorem mnuop3d

Description: Third operation of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuop3d.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
mnuop3d.2 φ U M
mnuop3d.3 φ A U
mnuop3d.4 φ F U
Assertion mnuop3d φ w U i A v F i v u F i u u w

Proof

Step Hyp Ref Expression
1 mnuop3d.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 mnuop3d.2 φ U M
3 mnuop3d.3 φ A U
4 mnuop3d.4 φ F U
5 2 4 sselpwd φ F 𝒫 U
6 1 2 3 5 mnuop23d φ w U 𝒫 A w i A v U i v v F u F i u u w
7 4 sseld φ v F v U
8 7 adantrd φ v F i v v U
9 pm3.22 v F i v i v v F
10 8 9 jca2 φ v F i v v U i v v F
11 10 reximdv2 φ v F i v v U i v v F
12 11 imim1d φ v U i v v F u F i u u w v F i v u F i u u w
13 12 ralimdv φ i A v U i v v F u F i u u w i A v F i v u F i u u w
14 13 adantld φ 𝒫 A w i A v U i v v F u F i u u w i A v F i v u F i u u w
15 14 reximdv φ w U 𝒫 A w i A v U i v v F u F i u u w w U i A v F i v u F i u u w
16 6 15 mpd φ w U i A v F i v u F i u u w