Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Shorter primitive equivalent of ax-groth
Minimal universes
mnuop3d
Next ⟩
mnuprdlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
mnuop3d
Description:
Third operation of a minimal universe.
(Contributed by
Rohan Ridenour
, 13-Aug-2023)
Ref
Expression
Hypotheses
mnuop3d.1
⊢
M
=
k
|
∀
l
∈
k
𝒫
l
⊆
k
∧
∀
m
∃
n
∈
k
𝒫
l
⊆
n
∧
∀
p
∈
l
∃
q
∈
k
p
∈
q
∧
q
∈
m
→
∃
r
∈
m
p
∈
r
∧
⋃
r
⊆
n
mnuop3d.2
⊢
φ
→
U
∈
M
mnuop3d.3
⊢
φ
→
A
∈
U
mnuop3d.4
⊢
φ
→
F
⊆
U
Assertion
mnuop3d
⊢
φ
→
∃
w
∈
U
∀
i
∈
A
∃
v
∈
F
i
∈
v
→
∃
u
∈
F
i
∈
u
∧
⋃
u
⊆
w
Proof
Step
Hyp
Ref
Expression
1
mnuop3d.1
⊢
M
=
k
|
∀
l
∈
k
𝒫
l
⊆
k
∧
∀
m
∃
n
∈
k
𝒫
l
⊆
n
∧
∀
p
∈
l
∃
q
∈
k
p
∈
q
∧
q
∈
m
→
∃
r
∈
m
p
∈
r
∧
⋃
r
⊆
n
2
mnuop3d.2
⊢
φ
→
U
∈
M
3
mnuop3d.3
⊢
φ
→
A
∈
U
4
mnuop3d.4
⊢
φ
→
F
⊆
U
5
2
4
sselpwd
⊢
φ
→
F
∈
𝒫
U
6
1
2
3
5
mnuop23d
⊢
φ
→
∃
w
∈
U
𝒫
A
⊆
w
∧
∀
i
∈
A
∃
v
∈
U
i
∈
v
∧
v
∈
F
→
∃
u
∈
F
i
∈
u
∧
⋃
u
⊆
w
7
4
sseld
⊢
φ
→
v
∈
F
→
v
∈
U
8
7
adantrd
⊢
φ
→
v
∈
F
∧
i
∈
v
→
v
∈
U
9
pm3.22
⊢
v
∈
F
∧
i
∈
v
→
i
∈
v
∧
v
∈
F
10
8
9
jca2
⊢
φ
→
v
∈
F
∧
i
∈
v
→
v
∈
U
∧
i
∈
v
∧
v
∈
F
11
10
reximdv2
⊢
φ
→
∃
v
∈
F
i
∈
v
→
∃
v
∈
U
i
∈
v
∧
v
∈
F
12
11
imim1d
⊢
φ
→
∃
v
∈
U
i
∈
v
∧
v
∈
F
→
∃
u
∈
F
i
∈
u
∧
⋃
u
⊆
w
→
∃
v
∈
F
i
∈
v
→
∃
u
∈
F
i
∈
u
∧
⋃
u
⊆
w
13
12
ralimdv
⊢
φ
→
∀
i
∈
A
∃
v
∈
U
i
∈
v
∧
v
∈
F
→
∃
u
∈
F
i
∈
u
∧
⋃
u
⊆
w
→
∀
i
∈
A
∃
v
∈
F
i
∈
v
→
∃
u
∈
F
i
∈
u
∧
⋃
u
⊆
w
14
13
adantld
⊢
φ
→
𝒫
A
⊆
w
∧
∀
i
∈
A
∃
v
∈
U
i
∈
v
∧
v
∈
F
→
∃
u
∈
F
i
∈
u
∧
⋃
u
⊆
w
→
∀
i
∈
A
∃
v
∈
F
i
∈
v
→
∃
u
∈
F
i
∈
u
∧
⋃
u
⊆
w
15
14
reximdv
⊢
φ
→
∃
w
∈
U
𝒫
A
⊆
w
∧
∀
i
∈
A
∃
v
∈
U
i
∈
v
∧
v
∈
F
→
∃
u
∈
F
i
∈
u
∧
⋃
u
⊆
w
→
∃
w
∈
U
∀
i
∈
A
∃
v
∈
F
i
∈
v
→
∃
u
∈
F
i
∈
u
∧
⋃
u
⊆
w
16
6
15
mpd
⊢
φ
→
∃
w
∈
U
∀
i
∈
A
∃
v
∈
F
i
∈
v
→
∃
u
∈
F
i
∈
u
∧
⋃
u
⊆
w