Metamath Proof Explorer


Theorem mnuop23d

Description: Second and third operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuop23d.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
mnuop23d.2 φ U M
mnuop23d.3 φ A U
mnuop23d.4 φ F V
Assertion mnuop23d φ w U 𝒫 A w i A v U i v v F u F i u u w

Proof

Step Hyp Ref Expression
1 mnuop23d.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 mnuop23d.2 φ U M
3 mnuop23d.3 φ A U
4 mnuop23d.4 φ F V
5 1 2 3 mnuop123d φ 𝒫 A U f w U 𝒫 A w i A v U i v v f u f i u u w
6 5 simprd φ f w U 𝒫 A w i A v U i v v f u f i u u w
7 eleq2 f = F v f v F
8 7 anbi2d f = F i v v f i v v F
9 8 rexbidv f = F v U i v v f v U i v v F
10 rexeq f = F u f i u u w u F i u u w
11 9 10 imbi12d f = F v U i v v f u f i u u w v U i v v F u F i u u w
12 11 ralbidv f = F i A v U i v v f u f i u u w i A v U i v v F u F i u u w
13 12 anbi2d f = F 𝒫 A w i A v U i v v f u f i u u w 𝒫 A w i A v U i v v F u F i u u w
14 13 rexbidv f = F w U 𝒫 A w i A v U i v v f u f i u u w w U 𝒫 A w i A v U i v v F u F i u u w
15 14 spcgv F V f w U 𝒫 A w i A v U i v v f u f i u u w w U 𝒫 A w i A v U i v v F u F i u u w
16 4 6 15 sylc φ w U 𝒫 A w i A v U i v v F u F i u u w