Metamath Proof Explorer


Theorem mnuop3d

Description: Third operation of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuop3d.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
mnuop3d.2 ( 𝜑𝑈𝑀 )
mnuop3d.3 ( 𝜑𝐴𝑈 )
mnuop3d.4 ( 𝜑𝐹𝑈 )
Assertion mnuop3d ( 𝜑 → ∃ 𝑤𝑈𝑖𝐴 ( ∃ 𝑣𝐹 𝑖𝑣 → ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 mnuop3d.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 mnuop3d.2 ( 𝜑𝑈𝑀 )
3 mnuop3d.3 ( 𝜑𝐴𝑈 )
4 mnuop3d.4 ( 𝜑𝐹𝑈 )
5 2 4 sselpwd ( 𝜑𝐹 ∈ 𝒫 𝑈 )
6 1 2 3 5 mnuop23d ( 𝜑 → ∃ 𝑤𝑈 ( 𝒫 𝐴𝑤 ∧ ∀ 𝑖𝐴 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝐹 ) → ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) ) ) )
7 4 sseld ( 𝜑 → ( 𝑣𝐹𝑣𝑈 ) )
8 7 adantrd ( 𝜑 → ( ( 𝑣𝐹𝑖𝑣 ) → 𝑣𝑈 ) )
9 pm3.22 ( ( 𝑣𝐹𝑖𝑣 ) → ( 𝑖𝑣𝑣𝐹 ) )
10 8 9 jca2 ( 𝜑 → ( ( 𝑣𝐹𝑖𝑣 ) → ( 𝑣𝑈 ∧ ( 𝑖𝑣𝑣𝐹 ) ) ) )
11 10 reximdv2 ( 𝜑 → ( ∃ 𝑣𝐹 𝑖𝑣 → ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝐹 ) ) )
12 11 imim1d ( 𝜑 → ( ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝐹 ) → ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) ) → ( ∃ 𝑣𝐹 𝑖𝑣 → ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) ) ) )
13 12 ralimdv ( 𝜑 → ( ∀ 𝑖𝐴 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝐹 ) → ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) ) → ∀ 𝑖𝐴 ( ∃ 𝑣𝐹 𝑖𝑣 → ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) ) ) )
14 13 adantld ( 𝜑 → ( ( 𝒫 𝐴𝑤 ∧ ∀ 𝑖𝐴 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝐹 ) → ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) ) ) → ∀ 𝑖𝐴 ( ∃ 𝑣𝐹 𝑖𝑣 → ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) ) ) )
15 14 reximdv ( 𝜑 → ( ∃ 𝑤𝑈 ( 𝒫 𝐴𝑤 ∧ ∀ 𝑖𝐴 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝐹 ) → ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) ) ) → ∃ 𝑤𝑈𝑖𝐴 ( ∃ 𝑣𝐹 𝑖𝑣 → ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) ) ) )
16 6 15 mpd ( 𝜑 → ∃ 𝑤𝑈𝑖𝐴 ( ∃ 𝑣𝐹 𝑖𝑣 → ∃ 𝑢𝐹 ( 𝑖𝑢 𝑢𝑤 ) ) )