Step |
Hyp |
Ref |
Expression |
1 |
|
mnuop3d.1 |
⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } |
2 |
|
mnuop3d.2 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) |
3 |
|
mnuop3d.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
4 |
|
mnuop3d.4 |
⊢ ( 𝜑 → 𝐹 ⊆ 𝑈 ) |
5 |
2 4
|
sselpwd |
⊢ ( 𝜑 → 𝐹 ∈ 𝒫 𝑈 ) |
6 |
1 2 3 5
|
mnuop23d |
⊢ ( 𝜑 → ∃ 𝑤 ∈ 𝑈 ( 𝒫 𝐴 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹 ) → ∃ 𝑢 ∈ 𝐹 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) |
7 |
4
|
sseld |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝐹 → 𝑣 ∈ 𝑈 ) ) |
8 |
7
|
adantrd |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐹 ∧ 𝑖 ∈ 𝑣 ) → 𝑣 ∈ 𝑈 ) ) |
9 |
|
pm3.22 |
⊢ ( ( 𝑣 ∈ 𝐹 ∧ 𝑖 ∈ 𝑣 ) → ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹 ) ) |
10 |
8 9
|
jca2 |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐹 ∧ 𝑖 ∈ 𝑣 ) → ( 𝑣 ∈ 𝑈 ∧ ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹 ) ) ) ) |
11 |
10
|
reximdv2 |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹 ) ) ) |
12 |
11
|
imim1d |
⊢ ( 𝜑 → ( ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹 ) → ∃ 𝑢 ∈ 𝐹 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) → ( ∃ 𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ 𝐹 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) |
13 |
12
|
ralimdv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹 ) → ∃ 𝑢 ∈ 𝐹 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) → ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ 𝐹 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) |
14 |
13
|
adantld |
⊢ ( 𝜑 → ( ( 𝒫 𝐴 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹 ) → ∃ 𝑢 ∈ 𝐹 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) → ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ 𝐹 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) |
15 |
14
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ 𝑈 ( 𝒫 𝐴 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹 ) → ∃ 𝑢 ∈ 𝐹 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) → ∃ 𝑤 ∈ 𝑈 ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ 𝐹 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) |
16 |
6 15
|
mpd |
⊢ ( 𝜑 → ∃ 𝑤 ∈ 𝑈 ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃ 𝑢 ∈ 𝐹 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) |